Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 92(4): 1306-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24496842

ABSTRACT

While feeding food-producing animals with microalgae was investigated several decades ago, this research has been reactivated by the recent exploration of microalgae as the third generation of feedstocks for biofuel production. Because the resultant defatted biomass contains high levels of protein and other nutrients, it may replace a portion of corn and soybean meal in animal diets. Our laboratory has acquired 4 types of full-fat and defatted microalgal biomass from biofuel production research (Cellana, Kailua-Kona, HI) that contain 13.9 to 38.2% crude protein and 1.5 to 9.3% crude fat. This review summarizes the safety and efficacy of supplementing 2 types of the biomass at 7.5 to 15% in the diets of weanling pigs, broiler chicks, and laying hens. Based on their responses of growth performance, egg production and quality, plasma and tissue biochemical indicators, and/or fecal chemical composition, all 3 types of animals were able to tolerate the microalgal biomass incorporation into their diets at 7.5% (on as-fed basis). Holistic analysis is also provided to explore the global potential of using the defatted microalgal biomass as a new feed ingredient in offsetting the biofuel production cost, reducing the dependence on staple crops such as corn and soybeans, decreasing greenhouse gas production of animal agriculture, and developing health value-added animal products.


Subject(s)
Animal Feed/analysis , Chickens/physiology , Diet/veterinary , Fats/chemistry , Microalgae/chemistry , Swine/physiology , Animals
2.
J Anim Sci ; 91(1): 238-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23048139

ABSTRACT

The primary pathway of lysine degradation in pigs presumably depends on the bifunctional protein α-aminoadipate δ-semialdehyde synthase (AASS), which contains lysine α-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH) activities. In liver, AASS is restricted to the mitochondrial matrix and lysine is presumptively transported through the plasma membrane by a cationic AA transporter (CAT1/2) and through the inner mitochondrial membrane by 1 or both mitochondrial ornithine transporters (ORC-1/ORC-2). Lysyl oxidase (LO) may represent an alternative pathway of lysine oxidation. The objective of this experiment was to analyze the distribution of indices of lysine catabolism in various pig tissues. We assessed LKR, SDH, and LO activities, lysine oxidation, mRNA abundance of LKR, CAT1/2, and ORC1/2, and AASS protein abundance (via SDH antibody) in liver, heart, kidney medulla and cortex, triceps, longissimus, whole intestine, enterocytes, and intestine stripped of enterocytes in 10 growing pigs, weighing ∼25 kg. The LKR activity differed across tissues (P<0.001) and was greatest in liver, intestine, and kidney samples, and LKR mRNA abundance (P<0.001) was greatest in liver; although, LKR activity and mRNA abundance were detected in all other tissues. Activity of SDH (P<0.001) and SDH mRNA abundance (P<0.001) were affected by tissue and were greatest in liver compared with all other tissues analyzed. The AASS protein abundance (P<0.001) was greatest in whole intestine and liver. Activity of LO (P<0.0001) was greatest in muscle samples. The abundance of ORC-1 (P<0.001) and ORC-2 mRNA (P<0.001) differed among tissues, and ORC-1 was greatest in liver, kidney, and intestinal preparations, and ORC-2 mRNA abundance was greatest in liver and intestine. Interestingly, LKR activity was correlated with ORC-1 (r=0.32, P<0.05) and ORC-2 (r=0.41, P<0.05) expression. The expression of CAT-1 was uniform in all tissues, whereas CAT-2 (P<0.01) was greatest in liver. In conclusion, these data indicate that extra-hepatic tissues contribute to lysine catabolism as do enzymes other than LKR.


Subject(s)
Lysine/metabolism , Swine/metabolism , Animals , Female , Gene Expression Regulation, Enzymologic/physiology , Ketoglutarate Dehydrogenase Complex/metabolism , Male , Protein-Lysine 6-Oxidase/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Saccharopine Dehydrogenases/metabolism , Swine/growth & development , Tissue Distribution
3.
Br J Urol ; 77(6): 824-9, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8705215

ABSTRACT

OBJECTIVE: To evaluate the use of confocal microscopy in the study of resistance to epirubicin and to determine the effect of temperature, viability and a resistance-reversing agent on the intracellular distribution of this drug in sensitive and resistant derivatives of a superficial bladder cancer cell line. MATERIALS AND METHODS: Viable and non-viable adherent cells were incubated in epirubicin solutions under various conditions. After incubation, the distribution of intracellular epirubicin fluorescence was visualized using confocal microscopy and a x50 water-immersion lens. RESULTS: There was a striking and consistent difference between resistant and sensitive cells in the intracellular distribution of the drug. In addition to having greater overall levels of epirubicin fluorescence, sensitive cells accumulated epirubicin predominantly in the nucleus. Epirubicin fluorescence in resistant cells was cytoplasmic and granular in appearance. When incubated at 0 degrees C, both cell lines showed no nuclear uptake and thus resembled resistant cells at 37 degrees C. However, dead cells rapidly acquired brightly fluorescent nuclei. The resistance-reversing agent verapamil appeared to cause reversion of the resistant to the sensitive phenotype. CONCLUSION: Confocal microscopy allows epirubicin-sensitive and resistant cultured tumour cells to be differentiated reliably and provides information about the mechanisms of action of, and resistance to, epirubicin. Applying this technique to clinical specimens should enable patients who have the resistant phenotype to be detected and the efficacy of intravesical resistance-reversing agents to be evaluated in such cases.


Subject(s)
Antibiotics, Antineoplastic/metabolism , Epirubicin/metabolism , Urinary Bladder Neoplasms/metabolism , Administration, Intravesical , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Epirubicin/administration & dosage , Epirubicin/therapeutic use , Fluorescence , Humans , Microscopy, Confocal , Sensitivity and Specificity , Tumor Cells, Cultured , Urinary Bladder Neoplasms/drug therapy , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...