Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
BMC Med Inform Decis Mak ; 24(1): 170, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886772

ABSTRACT

BACKGROUND: Artificial intelligence (AI) has become a pivotal tool in advancing contemporary personalised medicine, with the goal of tailoring treatments to individual patient conditions. This has heightened the demand for access to diverse data from clinical practice and daily life for research, posing challenges due to the sensitive nature of medical information, including genetics and health conditions. Regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the General Data Protection Regulation (GDPR) in Europe aim to strike a balance between data security, privacy, and the imperative for access. RESULTS: We present the Gemelli Generator - Real World Data (GEN-RWD) Sandbox, a modular multi-agent platform designed for distributed analytics in healthcare. Its primary objective is to empower external researchers to leverage hospital data while upholding privacy and ownership, obviating the need for direct data sharing. Docker compatibility adds an extra layer of flexibility, and scalability is assured through modular design, facilitating combinations of Proxy and Processor modules with various graphical interfaces. Security and reliability are reinforced through components like Identity and Access Management (IAM) agent, and a Blockchain-based notarisation module. Certification processes verify the identities of information senders and receivers. CONCLUSIONS: The GEN-RWD Sandbox architecture achieves a good level of usability while ensuring a blend of flexibility, scalability, and security. Featuring a user-friendly graphical interface catering to diverse technical expertise, its external accessibility enables personnel outside the hospital to use the platform. Overall, the GEN-RWD Sandbox emerges as a comprehensive solution for healthcare distributed analytics, maintaining a delicate equilibrium between accessibility, scalability, and security.


Subject(s)
Computer Security , Confidentiality , Humans , Computer Security/standards , Confidentiality/standards , Artificial Intelligence , Hospitals
2.
Cancers (Basel) ; 16(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473210

ABSTRACT

Artificial intelligence (AI) is emerging as a discipline capable of providing significant added value in Medicine, in particular in radiomic, imaging analysis, big dataset analysis, and also for generating virtual cohort of patients. However, in coping with chronic myeloid leukemia (CML), considered an easily managed malignancy after the introduction of TKIs which strongly improved the life expectancy of patients, AI is still in its infancy. Noteworthy, the findings of initial trials are intriguing and encouraging, both in terms of performance and adaptability to different contexts in which AI can be applied. Indeed, the improvement of diagnosis and prognosis by leveraging biochemical, biomolecular, imaging, and clinical data can be crucial for the implementation of the personalized medicine paradigm or the streamlining of procedures and services. In this review, we present the state of the art of AI applications in the field of CML, describing the techniques and objectives, and with a general focus that goes beyond Machine Learning (ML), but instead embraces the wider AI field. The present scooping review spans on publications reported in Pubmed from 2003 to 2023, and resulting by searching "chronic myeloid leukemia" and "artificial intelligence". The time frame reflects the real literature production and was not restricted. We also take the opportunity for discussing the main pitfalls and key points to which AI must respond, especially considering the critical role of the 'human' factor, which remains key in this domain.

3.
Rev Endocr Metab Disord ; 25(1): 175-186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37434097

ABSTRACT

BACKGROUND: In the last years growing evidences on the role of radiomics and machine learning (ML) applied to different nuclear medicine imaging modalities for the assessment of thyroid diseases are starting to emerge. The aim of this systematic review was therefore to analyze the diagnostic performances of these technologies in this setting. METHODS: A wide literature search of the PubMed/MEDLINE, Scopus and Web of Science databases was made in order to find relevant published articles about the role of radiomics or ML on nuclear medicine imaging for the evaluation of different thyroid diseases. RESULTS: Seventeen studies were included in the systematic review. Radiomics and ML were applied for assessment of thyroid incidentalomas at 18 F-FDG PET, evaluation of cytologically indeterminate thyroid nodules, assessment of thyroid cancer and classification of thyroid diseases using nuclear medicine techniques. CONCLUSION: Despite some intrinsic limitations of radiomics and ML may have affect the results of this review, these technologies seem to have a promising role in the assessment of thyroid diseases. Validation of preliminary findings in multicentric studies is needed to translate radiomics and ML approaches in the clinical setting.


Subject(s)
Nuclear Medicine , Thyroid Neoplasms , Thyroid Nodule , Humans , Radiomics , Fluorodeoxyglucose F18 , Machine Learning
4.
Forensic Sci Med Pathol ; 20(1): 149-165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37490201

ABSTRACT

Determining the post-mortem interval (PMI) is one of forensic pathology's primary objectives and one of its most challenging tasks. Numerous studies have demonstrated the accuracy of histomorphology and immunohistochemical investigations in determining the time of death. Nevertheless, the skin, a robust and easy-to-remove tissue, has only been partially analyzed so far. By studying 20 adult male mice, we tried to determine whether post-mortem immunohistochemical detection in the skin of HMGB1 proteins and associated components (Beclin1 and RAGE) could be used for this purpose. We discovered that nuclear HMGB1 overexpression indicates that death occurred within the previous 12 h, nuclear HMGB1 negativization with high cytoplasmic HMGB1 intensity indicates that death occurred between 12 and 36 h earlier and cytoplasmic HMGB1 negativization indicates that more than 48 h have passed since death. RAGE and Beclin1 levels in the cytoplasm also decreased with time. The latter proteins' negativization might indicate that more than 24 and 36 h, respectively, have passed from the time of death. These indicators might potentially be helpful in forensic practice for determining the PMI using immunohistochemistry.


Subject(s)
HMGB1 Protein , Postmortem Changes , Male , Mice , Animals , HMGB1 Protein/metabolism , Beclin-1 , Autopsy , Time
6.
Diagnostics (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37189492

ABSTRACT

This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin's lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann-Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.

7.
JCO Clin Cancer Inform ; 7: e2200126, 2023 05.
Article in English | MEDLINE | ID: mdl-37146261

ABSTRACT

PURPOSE: A semiautomated pipeline for the collection and curation of free-text and imaging real-world data (RWD) was developed to quantify cancer treatment outcomes in large-scale retrospective real-world studies. The objectives of this article are to illustrate the challenges of RWD extraction, to demonstrate approaches for quality assurance, and to showcase the potential of RWD for precision oncology. METHODS: We collected data from patients with advanced melanoma receiving immune checkpoint inhibitors at the Lausanne University Hospital. Cohort selection relied on semantically annotated electronic health records and was validated using process mining. The selected imaging examinations were segmented using an automatic commercial software prototype. A postprocessing algorithm enabled longitudinal lesion identification across imaging time points and consensus malignancy status prediction. Resulting data quality was evaluated against expert-annotated ground-truth and clinical outcomes obtained from radiology reports. RESULTS: The cohort included 108 patients with melanoma and 465 imaging examinations (median, 3; range, 1-15 per patient). Process mining was used to assess clinical data quality and revealed the diversity of care pathways encountered in a real-world setting. Longitudinal postprocessing greatly improved the consistency of image-derived data compared with single time point segmentation results (classification precision increased from 53% to 86%). Image-derived progression-free survival resulting from postprocessing was comparable with the manually curated clinical reference (median survival of 286 v 336 days, P = .89). CONCLUSION: We presented a general pipeline for the collection and curation of text- and image-based RWD, together with specific strategies to improve reliability. We showed that the resulting disease progression measures match reference clinical assessments at the cohort level, indicating that this strategy has the potential to unlock large amounts of actionable retrospective real-world evidence from clinical records.


Subject(s)
Melanoma , Precision Medicine , Humans , Retrospective Studies , Reproducibility of Results , Melanoma/diagnostic imaging , Multimodal Imaging
8.
Front Oncol ; 13: 1043683, 2023.
Article in English | MEDLINE | ID: mdl-37025593

ABSTRACT

The growing availability of clinical real-world data (RWD) represents a formidable opportunity to complement evidence from randomized clinical trials and observe how oncological treatments perform in real-life conditions. In particular, RWD can provide insights on questions for which no clinical trials exist, such as comparing outcomes from different sequences of treatments. To this end, process mining is a particularly suitable methodology for analyzing different treatment paths and their associated outcomes. Here, we describe an implementation of process mining algorithms directly within our hospital information system with an interactive application that allows oncologists to compare sequences of treatments in terms of overall survival, progression-free survival and best overall response. As an application example, we first performed a RWD descriptive analysis of 303 patients with advanced melanoma and reproduced findings observed in two notorious clinical trials: CheckMate-067 and DREAMseq. Then, we explored the outcomes of an immune-checkpoint inhibitor rechallenge after a first progression on immunotherapy versus switching to a BRAF targeted treatment. By using interactive process-oriented RWD analysis, we observed that patients still derive long-term survival benefits from immune-checkpoint inhibitors rechallenge, which could have direct implications on treatment guidelines for patients able to carry on immune-checkpoint therapy, if confirmed by external RWD and randomized clinical trials. Overall, our results highlight how an interactive implementation of process mining can lead to clinically relevant insights from RWD with a framework that can be ported to other centers or networks of centers.

9.
BMC Med Inform Decis Mak ; 22(Suppl 6): 346, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732801

ABSTRACT

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease whose spreading and progression mechanisms are still unclear. The ability to predict ALS prognosis would improve the patients' quality of life and support clinicians in planning treatments. In this paper, we investigate ALS evolution trajectories using Process Mining (PM) techniques enriched to both easily mine processes and automatically reveal how the pathways differentiate according to patients' characteristics. METHODS: We consider data collected in two distinct data sources, namely the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) dataset and a real-world clinical register (ALS-BS) including data of patients followed up in two tertiary clinical centers of Brescia (Italy). With a focus on the functional abilities progressively impaired as the disease progresses, we use two Process Discovery methods, namely the Directly-Follows Graph and the CareFlow Miner, to mine the population disease trajectories on the PRO-ACT dataset. We characterize the impairment trajectories in terms of patterns, timing, and probabilities, and investigate the effect of some patients' characteristics at onset on the followed paths. Finally, we perform a comparative study of the impairment trajectories mined in PRO-ACT versus ALS-BS. RESULTS: We delineate the progression pathways on PRO-ACT, identifying the predominant disabilities at different stages of the disease: for instance, 85% of patients enter the trials without disabilities, and 48% of them experience the impairment of Walking/Self-care abilities first. We then test how a spinal onset increases the risk of experiencing the loss of Walking/Self-care ability as first impairment (52% vs. 27% of patients develop it as the first impairment in the spinal vs. the bulbar cohorts, respectively), as well as how an older age at onset corresponds to a more rapid progression to death. When compared, the PRO-ACT and the ALS-BS patient populations present some similarities in terms of natural progression of the disease, as well as some differences in terms of observed trajectories plausibly due to the trial scheduling and recruitment criteria. CONCLUSIONS: We exploited PM to provide an overview of the evolution scenarios of an ALS trial population and to preliminary compare it to the progression observed in a clinical cohort. Future work will focus on further improving the understanding of the disease progression mechanisms, by including additional real-world subjects as well as by extending the set of events considered in the impairment trajectories.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/therapy , Disease Progression , Quality of Life , Prognosis
10.
Hum Vaccin Immunother ; 19(1): 2172926, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36723981

ABSTRACT

Immunotherapy has become a cornerstone for the treatment of renal cell carcinoma. Nevertheless, some patients are resistant to immune checkpoint inhibitors. The possibility to identify patients who cannot benefit from immunotherapy is a relevant clinical challenge. We analyzed the association between several radiomics features and response to immunotherapy in 53 patients treated with checkpoint inhibitors for advanced renal cell carcinoma. We found that the following features are associated with progression of disease as best tumor response: F_stat.range (p < .0004), F_stat.max (p < .0007), F_stat.var (p < .0016), F_stat.uniformity (p < .0020), F_stat.90thpercentile (p < .0050). Gross tumor volumes characterized by high values of F_stat.var and F_stat.max (greater than 60,000 and greater than 300, respectively) are most likely related to a high risk of progression. Further analyses are warranted to confirm these results. Radiomics, together with other potential predictive factors, such as gut microbiota, genetic features or circulating immune molecules, could allow a personalized treatment for patients with advanced renal cell carcinoma.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/therapy , Retrospective Studies , Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy/methods , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/therapy , Ipilimumab/therapeutic use
11.
J Clin Med ; 11(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36498540

ABSTRACT

Though the relationship between both "attended" and "unattended" BP and several forms of target organ damage have been evaluated, data on retinal arteriolar alterations are lacking. The aim of our study was to evaluate the relationship between "attended" or "unattended" BP values and retinal arteriolar changes in consecutive individuals undergoing a clinical evaluation and assessment of retinal fundus at an ESH Excellence Centre. An oscillometric device programmed to perform 3 BP measurements, at 1 min intervals and after 5 min of rest was used on all individuals to measure BP with the patient alone in the room ("unattended") or in the presence of the physician ("attended") in the same day in a random order. The retinal arteriole's wall thickness (WT) was measured automatically by a localization algorithm as the difference between external (ED) and internal diameter (ID) by adaptive optics (RTX-1, Imagine Eyes, Orsay, Francia). Media-to-lumen ratio (WLR) of the retinal arterioles and cross-sectional area (WCSA) of the vascular wall were calculated. Results: One-hundred-forty-two patients were examined (mean age 57 ± 12 yrs, 48% female, mean BMI 26 ± 4). Among them, 60% had hypertension (84% treated) and 11% had type 2 diabetes mellitus. Unattended systolic BP (SBP) was lower as compared to attended SBP (129 ± 14.8. vs. 122.1 ± 13.6 mmHg, p < 0.0001). WLR was similarly correlated with unattended and attended SBP (r = 0.281, p < 0.0001 and r = 0.382, p < 0.0001) and with unattended and attended diastolic BP (r = 0.34, p < 0.001 and r = 0.29, p < 0.0001). The differences between correlations were not statistically significant (Steiger's Z test). Conclusion: The measurement of "unattended" or "attended" BP provides different values, and unattended BP is lower as compared to attended BP. In this study a similar correlation was observed between attended and unattended BP values and structural changes of retinal arterioles.

12.
Front Oncol ; 12: 1043675, 2022.
Article in English | MEDLINE | ID: mdl-36568192

ABSTRACT

During the acute phase of the COVID-19 pandemic, hospitals faced a challenge to manage patients, especially those with other comorbidities and medical needs, such as cancer patients. Here, we use Process Mining to analyze real-world therapeutic pathways in a cohort of 1182 cancer patients of the Lausanne University Hospital following COVID-19 infection. The algorithm builds trees representing sequences of coarse-grained events such as Home, Hospitalization, Intensive Care and Death. The same trees can also show probability of death or time-to-event statistics in each node. We introduce a new tool, called Differential Process Mining, which enables comparison of two patient strata in each node of the tree, in terms of hits and death rate, together with a statistical significance test. We thus compare management of COVID-19 patients with an active cancer in the first vs. second COVID-19 waves to quantify hospital adaptation to the pandemic. We also compare patients having undergone systemic therapy within 1 year to the rest of the cohort to understand the impact of an active cancer and/or its treatment on COVID-19 outcome. This study demonstrates the value of Process Mining to analyze complex event-based real-world data and generate hypotheses on hospital resource management or on clinical patient care.

13.
Cancers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36011035

ABSTRACT

Background: We evaluated the value of pre-treatment positron-emission tomography−computed tomography (PET-CT)-based radiomic features in predicting the locoregional progression-free survival (LR-PFS) of patients with inoperable or unresectable oesophageal cancer. Material and Methods: Forty-six patients were included and 230 radiomic parameters were extracted. After a principal component analysis (PCA), we identified the more robust radiomic parameters, and we used them to develop a heatmap. Finally, we correlated these radiomic features with LR-PFS. Results: The median follow-up time was 17 months. The two-year LR-PFS and PFS rates were 35.9% (95% CI: 18.9−53.3) and 21.6% (95%CI: 10.0−36.2), respectively. After the correlation analysis, we identified 55 radiomic parameters that were included in the heatmap. According to the results of the hierarchical clustering, we identified two groups of patients presenting statistically different median LR-PFSs (22.8 months vs. 9.9 months; HR = 2.64; 95% CI 0.97−7.15; p = 0.0573). We also identified two radiomic features ("F_rlm_rl_entr_per" and "F_rlm_2_5D_rl_entr") significantly associated with LR-PFS. Patients expressing a "F_rlm_2_5D_rl_entr" of <3.3 had a better median LR- PFS (29.4 months vs. 8.2 months; p = 0.0343). Patients presenting a "F_rlm_rl_entr_per" of <4.7 had a better median LR-PFS (50.4 months vs. 9.9 months; p = 0.0132). Conclusion: We identified two radiomic signatures associated with a lower risk of locoregional relapse after CRT.

14.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36012384

ABSTRACT

AIM: The aim of this study is to assess whether there are some correlations between radiomics and baseline clinical-biological data of prostate cancer (PC) patients using Fluorine-18 Fluoroethylcholine (18F-FECh) PET/CT. METHODS: Digital rectal examination results (DRE), Prostate-Specific Antigen (PSA) serum levels, and bioptical-Gleason Score (GS) were retrospectively collected in newly diagnosed PC patients and considered as outcomes of PC. Thereafter, Volumes of interest (VOI) encompassing the prostate of each patient were drawn to extract conventional and radiomic PET features. Radiomic bivariate models were set up using the most statistically relevant features and then trained/tested with a cross-fold validation test. The best bivariate models were expressed by mean and standard deviation to the normal area under the receiver operating characteristic curves (mAUC, sdAUC). RESULTS: Semiquantitative and radiomic analyses were performed on 67 consecutive patients. tSUVmean and tSkewness were significant DRE predictors at univariate analysis (OR 1.52 [1.01; 2.29], p = 0.047; OR 0.21 [0.07; 0.65], p = 0.007, respectively); moreover, tKurtosis was an independent DRE predictor at multivariate analysis (OR 0.64 [0.42; 0.96], p = 0.03) Among the most relevant bivariate models, szm_2.5D.z.entr + cm.clust.tend was a predictor of PSA levels (mAUC 0.83 ± 0.19); stat.kurt + stat.entropy predicted DRE (mAUC 0.79 ± 0.10); cm.info.corr.1 + szm_2.5D.szhge predicted GS (mAUC 0.78 ± 0.16). CONCLUSIONS: tSUVmean, tSkewness, and tKurtosis were predictors of DRE results only, while none of the PET parameters predicted PSA or GS significantly; 18F-FECh PET/CT radiomic models should be tested in larger cohort studies of newly diagnosed PC patients.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Choline/analogs & derivatives , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Retrospective Studies
15.
Front Public Health ; 10: 815674, 2022.
Article in English | MEDLINE | ID: mdl-35677768

ABSTRACT

The impact of the COVID-19 pandemic involved the disruption of the processes of care and the need for immediately effective re-organizational procedures. In the context of digital health, it is of paramount importance to determine how a specific patients' population reflects into the healthcare dynamics of the hospital, to investigate how patients' sub-group/strata respond to the different care processes, in order to generate novel hypotheses regarding the most effective healthcare strategies. We present an analysis pipeline based on the heterogeneous collected data aimed at identifying the most frequent healthcare processes patterns, jointly analyzing them with demographic and physiological disease trajectories, and stratify the observed cohort on the basis of the mined patterns. This is a process-oriented pipeline which integrates process mining algorithms, and trajectory mining by topological data analyses and pseudo time approaches. Data was collected for 1,179 COVID-19 positive patients, hospitalized at the Italian Hospital "Istituti Clinici Salvatore Maugeri" in Lombardy, integrating different sources including text admission letters, EHR and hospital infrastructure data. We identified five temporal phenotypes, from laboratory values trajectories, which are characterized by statistically significant different death risk estimates. The process mining algorithms allowed splitting the data in sub-cohorts as function of the pandemic waves and of the temporal trajectories showing statistically significant differences in terms of events characteristics.


Subject(s)
COVID-19 , Electronic Health Records , Algorithms , COVID-19/epidemiology , Humans , Pandemics , Phenotype
16.
Diagnostics (Basel) ; 12(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35741138

ABSTRACT

Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.

17.
Diagnostics (Basel) ; 12(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35741139

ABSTRACT

The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.

18.
J Biomed Inform ; 127: 103994, 2022 03.
Article in English | MEDLINE | ID: mdl-35104641

ABSTRACT

Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.


Subject(s)
Delivery of Health Care , Hospitals , Humans
19.
J Clin Med ; 11(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160067

ABSTRACT

The aim of this study was to compare two different tomographs for the evaluation of the role of semiquantitative PET/CT parameters and radiomics features (RF) in the prediction of thyroid incidentalomas (TIs) at 18F-FDG imaging. A total of 221 patients with the presence of TIs were retrospectively included. After volumetric segmentation of each TI, semiquantitative parameters and RF were extracted. All of the features were tested for significant differences between the two PET scanners. The performances of all of the features in predicting the nature of TIs were analyzed by testing three classes of final logistic regression predictive models, one for each tomograph and one with both scanners together. Some RF resulted significantly different between the two scanners. PET/CT semiquantitative parameters were not able to predict the final diagnosis of TIs while GLCM-related RF (in particular GLCM entropy_log2 e GLCM entropy_log10) together with some GLRLM-related and GLZLM-related features presented the best predictive performances. In particular, GLCM entropy_log2, GLCM entropy_log10, GLZLM SZHGE, GLRLM HGRE and GLRLM HGZE resulted the RF with best performances. Our study enabled the selection of some RF able to predict the final nature of TIs discovered at 18F-FDG PET/CT imaging. Classic semiquantitative and volumetric PET/CT parameters did not reveal these abilities. Furthermore, a good overlap in the extraction of RF between the two scanners was underlined.

20.
J Clin Med ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36615053

ABSTRACT

The aim of this study was to compare two different PET/CT tomographs for the evaluation of the role of radiomics features (RaF) and machine learning (ML) in the prediction of the histological classification of stage I and II non-small-cell lung cancer (NSCLC) at baseline [18F]FDG PET/CT. A total of 227 patients were retrospectively included and, after volumetric segmentation, RaF were extracted. All of the features were tested for significant differences between the two scanners and considering both the scanners together, and their performances in predicting the histology of NSCLC were analyzed by testing of different ML approaches: Logistic Regressor (LR), k-Nearest Neighbors (kNN), Decision Tree (DT) and Random Forest (RF). In general, the models with best performances for all the scanners were kNN and LR and moreover the kNN model had better performances compared to the other. The impact of the PET/CT scanner used for the acquisition of the scans on the performances of RaF was evident: mean area under the curve (AUC) values for scanner 2 were lower compared to scanner 1 and both the scanner considered together. In conclusion, our study enabled the selection of some [18F]FDG PET/CT RaF and ML models that are able to predict with good performances the histological subtype of NSCLC. Furthermore, the type of PET/CT scanner may influence these performances.

SELECTION OF CITATIONS
SEARCH DETAIL
...