Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(4)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102225

ABSTRACT

Opuntia cladodes are a typical vegetable waste, from which mucilage in gel form can be extracted. This work proposes blending it with a self-produced thermoplastic starch (TPS), originating from potato starch with a high content in glycerol (ca. 30%). Three methods were compared for extraction, bare maceration (MA), mechanical blending (ME) and mechanical blending following maceration (MPM) to produce films with an approximate thickness of 150 µm. For the comparison, tensile testing, differential scanning calorimetry and scanning electron microscopy were used. The MPM process proved the most effective, not only for extraction yielding, but also to obtain a larger deformation of the samples with respect to the one allowed by the pure TPS films. A considerable plasticization effect was observed. Despite this, the mechanical performance is still not completely satisfactory, and the expected effect of the calcium and magnesium salts contained in the mucilage to improve the rigidity of the TPS film was not really revealed. Prospected improvements would concern the fabrication process and the investigation of other possible loading modes and sample geometries.

2.
J Nanosci Nanotechnol ; 20(7): 4549-4556, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968517

ABSTRACT

To meet the increasing demand, for stretchable conductive materials in a wide range of applications, innovative conductors based on single wall carbon nanotubes (SWCNT) self-grafted on different polymer films, are assembled. Aiming at a simple technology for flexible and stretchable electronic devices, and contrary to what commonly reported for carbon nanotubes (CNT), no chemical functionalization of SWCNT is necessary for stable grafting onto several polymeric surfaces. The novelty and functionality of our composite materials stand in the synergy among the intrinsic biocompatibility of CNT, a fully inert material, their electrical conductivity, and the stretchable-viscoelastic properties of the polymer-nanotube bundles composites. Electrical characterization of both unstretched and strongly stretched planar film conductors is provided, demonstrating the use of this new composite material for technological application. Also, an insight into the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy (SEM) of the surface composite. As an example of technological application of such stretchable circuitry, the electrical functionality of a carbon nanotube-based six-sensor (electrode) grid is used to record subdural electrocorticograms in freely-moving laboratory rats over approximately three months.

3.
Front Microbiol ; 10: 2694, 2019.
Article in English | MEDLINE | ID: mdl-31920998

ABSTRACT

Biochar shapes the soil environment and plant growth. Nevertheless, the mechanisms associated with an improved plant biomass and soil microbiome in low metal-contaminated soils are still unclear. In this study, the influence of biochar on soil physico-chemical properties, plant performance, and rhizosphere microbiota in durum wheat was investigated at the above- and belowground levels. Two kinds of biochar from different feedstocks (wood chips and wheat straw pellets) and two Italian durum wheat varieties, Duilio and Marco Aurelio, were analyzed in a greenhouse using a low-nutrient gleyic fluvisol containing a very small amount of Pb and Zn. Four different treatments were performed: soil-only control (C), soil amended with woody biochar equilibrated with nutrient solution (B1+) and non-activated (B1-), and soil amended with non-activated (B2-) wheat straw biochar. Seven weeks after seed germination, (1) the physico-chemical properties of soil, biochars, and mixtures were assessed; (2) the fresh and dry weight of aboveground plant tissues and roots and other morphometric traits were measured; and (3) metabarcoding of the 16S rRNA bacterial gene was performed on rhizosphere soil samples. The results showed that the biochar from wheat straw had stronger impact on both durum varieties, with higher electrical conductivity, higher levels of available K and Na, and a substantial increase of dissolved Na+, K+, and Cl- ions in pore water. Generally, biochar amendment decreased Zn availability for the plants. In addition, biochar improved plant growth in the early growth stage, and the more positive effect was achieved by combining wheat straw biochar with Marco Aurelio. Rhizosphere bacterial microbiota showed variation in alpha diversity only due to treatment; on the other hand, the differential analysis showed consistent variation among samples with significant effects on amplicon sequence variant (ASV) abundance due to the specific biochar treatment as well as the genotype. The pure B1-, due to its scarce nutrient content with respect to the richer types (B1+ and B2-), had a negative impact on microbiota richness. Our study highlights that an appropriate combination of biochar feedstock and crop species may lead to superior yield.

4.
J Nanosci Nanotechnol ; 11(10): 9016-24, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22400295

ABSTRACT

Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

5.
Ann N Y Acad Sci ; 1171: 600-5, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19723110

ABSTRACT

Carbon nanotubes are considered to be one of the novel most attractive materials in nanotechnology. Because of their multiple industrial and biomedical applications, thorough studies on their toxicity and biocompatibility become a priority in order to prevent possible health risks. In this study the effects of multiwalled carbon nanotubes (MWCNT) on healthy monocytes from human peripheral blood were investigated. The results indicate that MWCNT exert a cytotoxic effect on monocytes, inducing cell death and increasing the extent of apoptosis induced by a chemotherapic agent. This cytotoxic effect may have important implications, and much attention in terms of evaluation of exposure risks is recommended.


Subject(s)
Apoptosis/drug effects , Cytotoxins/pharmacology , Monocytes/drug effects , Nanotubes, Carbon/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Etoposide/pharmacology , Flow Cytometry , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Monocytes/cytology , Necrosis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...