Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Narra J ; 4(1): e670, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798866

ABSTRACT

The evidence on the role of diets in the production of short-chain fatty acids (SCFAs) was limited. The aim of this study was to assess the potential effects of high-fat high-fructose (HFHF), high-fat, and Western diets on the levels of SCFA. A research experiment employing a post-test-only control group design was carried out from January to April 2022. A total of 27 rats were randomly allocated to each study group. SCFA was measured two weeks after diet administration. Analysis of variance (ANOVA) test was used to analyze the differences among groups, and the effect estimate of each group was analyzed using post hoc Tukey. The concentrations of SCFAs post HFHF diets were recorded as follows: acetic acid at 54.60±10.58 mmol/g, propionic acid at 28.03±8.81 mmol/g, and butyric acid at 4.23±1.68 mmol/g. Following the high-fat diet, acetic acid measured 61.85±14.25 mmol/gr, propionic acid measured 25.19±5.55 mmol/gr, and butyric acid measured 6.10±2.93 mmol/gr. After the administration of Western diet, the levels of SCFA were 68.18±25.73, 29.69±12.76, and 7.48±5.51 mmol/g for acetic acid, propionic acid, and butyric acid, respectively. The level of butyric acid was significantly lower in HFHF diet group compared to the normal diet (mean difference (MD) 6.34; 95%CI: 0.61, 12.04; p=0.026). The levels of acetic acid (p=0.419) and propionic acid (p=0.316) were not statistically different among diet types (HFHF, high-fat, and Western diet). In conclusion, HFHF diet is associated with a lower level of butyric acid than the normal diet in a rat model.


Subject(s)
Diet, High-Fat , Diet, Western , Disease Models, Animal , Fatty Acids, Volatile , Fructose , Non-alcoholic Fatty Liver Disease , Animals , Rats , Diet, High-Fat/adverse effects , Fatty Acids, Volatile/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Fructose/administration & dosage , Diet, Western/adverse effects , Male , Rats, Sprague-Dawley , Acetic Acid
2.
Microorganisms ; 10(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36144350

ABSTRACT

Malnutrition, which consists of undernutrition and overnutrition, is associated with gut microbiota composition, diet, and sociodemographic factors. Undernutrition is a nutrient deficiency that that should be identified to prevent other diseases. In this study, we evaluate the gut microbiota composition in undernourished children in association with diet and sociodemographic factors. We observed normal children (n= 20) and undernourished children (n= 20) for ten days in Lombok and Yogyakarta. Diet, sociodemographic factors, and medical records were recorded using food records, screening forms, and standard household questionnaires. Gut microbiota analysis was performed using 16S rRNA gene sequencing targeting the V3-V4 region. The result showed that the undernourished group had lower energy intake. In addition, the undernourished group had lower quality of medical records, parent knowledge, education, and exclusive breastfeeding. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were significantly different between normal and undernourished children. Based on LefSe, we determined that Akkermansia is a biomarker for undernourished children. In conclusion, diet and sociodemographic factors affect the gut microbiota composition of undernourished children.

SELECTION OF CITATIONS
SEARCH DETAIL
...