Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 63(39): 18495-18501, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39271477

ABSTRACT

A series of titanate cisoid bis(chalcogenidos) (Ch = Te, Se, and S) complexes supported by the ß-diketiminate ligand BDI- = [ArNC(CH3)]2CH (Ar = 2,6-iPr2C6H3) are readily assembled via treatment of the TiIII precursor (BDI)Ti(CH2SiMe3)2 with 2.5 equiv of elemental "Ch" source and 1 equiv of reductant in the presence of crown-ether. In the absence of the electride, Te or S addition to (BDI)Ti(CH2SiMe3)2 results instead in the isolation of a mononuclear tellurido-tellurolate [(BDI)Ti(=Te)(TeCH2SiMe3)] and the bridging sulfido-thiolate complex [(BDI)Ti(SCH2SiMe3)(µ-S)]2, respectively. In the case of Se, the rare selenido-perselenoate complex [(BDI)Ti(=Se)(η2-SeSeCH2SiMe3)] was isolated. In addition to crystallographically and spectroscopically characterizing all of the complexes, we demonstrate the latter species to be likely intermediates in the formation of [(BDI)Ti(Ch)2]- via the addition of electride.

2.
Inorg Chem ; 63(39): 18332-18344, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39292545

ABSTRACT

The use of a nonrigid, pyridyldialdimine-derived macrocyclic ligand (3PDAI2) enabled the synthesis of well-defined mono-, di-, tri-, and tetra-nuclear Cu(I) complexes in good yields through rational synthetic means. Starting from mono- and diargentous 3PDAI2 complexes, transmetalation to Cu(I) proceeded smoothly with formation of AgX (X = Cl, I) salts to generate mono-, di-, and trinuclear copper complexes. Monodentate supporting ligands (MeCN, xylNC, PMe3, PPh3) were found to either transmetallate with or bind various di- and trinuclear clusters. The solution-phase dynamic behaviors of these species were studied through NMR spectroscopic investigations, and an in-depth study of the trinuclear systems revealed a rate dependence on the identity of the supporting ligand, indicating that ligand dissociation reactions were involved in the dynamic exchange processes. Synthetic investigations further found methods for the purposeful interconversion between the di- and trinuclear systems as well as the synthesis of a pseudotetrahedral tetracopper complex with two µ-Ph supporting ligands.

3.
IUCrdata ; 9(Pt 8): x240745, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39247077

ABSTRACT

A new, cationic N-heterocyclic carbene RhI complex with a tetra-fluorido-borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh-NHC complex. There are several close, non-standard C-H⋯F hydrogen-bonding inter-actions between the ions. One of the tetra-fluorido-borate anions shows statistical disorder of the F atoms.

4.
IUCrdata ; 9(Pt 7): x240704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39108937

ABSTRACT

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol-ecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cyclo-octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak inter-molecular non-standard hydrogen-bonding inter-action exists between the chlorido and NHC ligands.

5.
Chemistry ; : e202304292, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009481

ABSTRACT

To evaluate bifunctional ligand reactivity involving NH acidic sites in the secondary coordination sphere, complexes where the proton has been substituted with a methyl group (NMe) are often investigated. An alternative strategy involves substitution of the NH group for an O. This contribution considers and compares the merits of these approaches; the synthesis and characterization of cationic square-planar Rh carbonyl complexes bearing diprotic bispyrazole pyridine ligand L1, and the bis-methylated pyrazole pyridine ligand L1Me are described. The syntheses and characterization of the novel monoprotic pyrazole isoxazole pyridine ligand L2 and aprotic bisisoxazole pyridine ligand L3, and their corresponding Rh carbonyl complexes are also described. Comparison of the CO stretching frequencies of the four Rh complexes suggest that substitutions of NH with NMe, as well as with O, lead to significant electronic differences. These electronic differences result in different reactivities with respect to ligand addition/substitution of the Rh carbonyl complexes. Overall, the data suggest that electronic differences arising due to the NH substitutions can be significant and should be considered when the NH group is substituted in investigations of the participation of the NH proton in a reaction.

6.
IUCrdata ; 9(Pt 6): x240501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974846

ABSTRACT

The title compound, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4, a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra-fluorido-borate counter-anion, crystallizes with two cations and two anions in the asymmetric unit of space group Pc. The Ir centers of the cations have distorted square-planar conformations, formed by a bidentate (η2 + η2) cyclo-octa-1,5-diene (COD) ligand, an N-heterocyclic carbene and a tri-phenyl-phosphane ligand with the NHC carbon atom and P atom being cis. In the extended structure, non-classical C-H⋯F hydrogen bonds, one of which is notably short (H⋯F = 2.21 Å), link the cations and anions. The carbon atoms of one of the COD ligands are disordered over adjacent sites in a 0.62:0.38 ratio.

7.
Inorg Chem ; 63(31): 14290-14295, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39047225

ABSTRACT

The synthesis and characterization of a tris(alkyne) ligand, tris[2-(trimethylsilyl)ethynyl-4-tert-butylbenzyl]amine (1), and its silver(I) hexafluorophosphate complex, 1-Ag, are reported. The solid-state structure and luminescence properties of 1-Ag indicate relatively strong silver(I)-alkyne interactions between the metal cation and 1. No significant changes in the bond angles or lengths were observed upon metalation of 1 with Ag+, indicating a relatively unstrained ligand-metal motif. The luminescence properties of 1 and 1-Ag are also disclosed, showing attenuation in the luminescence intensity upon Ag+ metalation, with Stokes shifts of ∼3700 and ∼3200 cm-1 for 1 and 1-Ag, respectively. The lifetimes of 1-Ag (τ1 = 8.383 ± 0.053 ns and τ2 = 4.665 ± 0.061 ns) were longer than those of 1 (τ1 = 6.708 ± 0.085 ns and τ2 = 3.689 ± 0.025 ns), possibly indicating multiple conformers of 1-Ag in solution. This new silver alkyne platform has potential applications in studies of catalysis, luminescent compounds, and sensing.

8.
J Am Chem Soc ; 146(23): 15666-15671, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830196

ABSTRACT

Examples of stable 3d transition metal methylidene complexes are extremely rare. Here we report an isolable and stable vanadium methylidene complex, [(PNP)V(=NAr)(=CH2)] (PNP = N[2-PiPr2-4-methylphenyl]-, Ar = 2,6-iPr2C6H3), via H atom transfer (HAT) from [(PNP)V(NHAr)(CH3)] or [(PNP)V(=NAr)(CH3)] using two or one equivalents of the TEMPO radical (TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl), respectively. Alternatively, the vanadium methylidene moiety can also be formed via the treatment of transient [(PNP)V=NAr] with the Wittig reagent, H2CPPh3. Structural and spectroscopic analysis, including 13C enriched labeling of the methylidene ligand, unequivocally confirmed the terminal nature of a rare 3d methylidene complex, featuring a V=CH2 bond distance of 1.908(2) Å and a highly downfield 13C NMR spectral shift at 298 ppm. In the absence of the ylide, intermediate [(PNP)V=NAr] activates dinitrogen to form an end-on bridging N2 complex, [(PNP)V(=NAr)]2(µ2-η1:η1-N2), having a singlet ground state. Complex [(PNP)V(=NAr)(=CH2)] reacts with H3COTf to form [(PNP)V(=NAr)(OTf)], accompanied by the release of ethylene as evidenced by 1H NMR spectroscopy, and reactivity studies suggest a ß-hydride elimination pathway.

9.
Angew Chem Int Ed Engl ; 63(32): e202404601, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38619509

ABSTRACT

The nitrido-ate complex [(PN)2Ti(N){µ2-K(OEt2)}]2 (1) (PN-=(N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) reductively couples CO and isocyanides in the presence of DME or cryptand (Kryptofix222), to form rare, five-coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E=O, L=Kryptofix222, (2); E=NAd, L=3 DME, (3); E=NtBu, L=3 DME, (4); E=NAd, L=Kryptofix222, (5)). Oxidation of 2-5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene, [(PN)2Ti(NCE)] (E=O, (6); E=NAd (7), NtBu (8)) and characterization by CW X-band EPR spectroscopy, revealed unpaired electron to be metal centric. Moreover, 1e- reduction of 6 and 7 in the presence of Kryptofix222cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high-frequency and -field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of π-donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N-atom to CO and CNAd.

10.
IUCrdata ; 9(Pt 1): x240060, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38322036

ABSTRACT

In the title triazole-based N-heterocyclic carbene rhodium(I) cationic complex with a tetra-fluorido-borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, which crystallizes with two cations and two anions in the asymmetric unit, the Rh center has a distorted square-planar coordination geometry with expected bond distances. Several nonclassical C-H⋯F hydrogen-bonding inter-actions help to consolidate the packing. Two of the F atoms of one of the anions are disordered over adjacent sites in a 0.814 (4):0.186 (4) ratio.

11.
Inorg Chem ; 63(9): 4028-4038, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38386423

ABSTRACT

Herein, we report the preparation and characterization of the Group 13 metal complexes of a tripodal tris(nitroxide)-based ligand, designated (TriNOx3-)M (M = Al (1), Ga (2), In (3)). Complexes 1 and 2 both activate the O-H bond of a range of alcohols spanning a ∼10 pKa unit range via an element-ligand cooperative pathway to afford the zwitterionic complexes (HTriNOx2-)M-OR. Structures of these alcohol adduct products are discussed. We demonstrate that the thermodynamic and kinetic aspects of the reactions are both influenced by the identity of the metal, with 1 having higher reaction equilibrium constants and proceeding at a faster rate relative to 2 for any given alcohol. These parameters are also influenced by the pKa of the alcohol, with more acidic alcohols reacting both to more completion and faster than their less acidic counterparts. Possible mechanistic pathways for the O-H activation are discussed.

12.
J Am Chem Soc ; 146(5): 2997-3009, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38272018

ABSTRACT

Reported is the catalytic cyclic polymer synthesis by a 3d transition metal complex: a V(V) alkylidyne, [(dBDI)V≡CtBu(OEt2)] (1-OEt2), supported by the deprotonated ß-diketiminate dBDI2- (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6-iPr2C6H3). Complex 1-OEt2 is a precatalyst for the polymerization of phenylacetylene (PhCCH) to give cyclic poly(phenylacetylene) (c-PPA), whereas its precursor, complex [(BDI)V≡CtBu(OTf)] (2-OTf; BDI- = [ArNC(CH3)]2CH, Ar = 2,6-iPr2C6H3, OTf = OSO2CF3), and the zwitterion [((C6F5)3B-dBDI)V≡CtBu(OEt2)] (3-OEt2) exhibit low catalytic activity despite having a neopentylidyne ligand. Cyclic polymer topologies were verified by size-exclusion chromatography (SEC) and intrinsic viscosity studies. A component of the mechanism of the cyclic polymerization reaction was probed by isolation and full characterization of 4- and 6-membered metallacycles as model intermediates. Metallacyclobutadiene (MCBD) and deprotiometallacyclobutadiene (dMCBD) complexes (dBDI)V[C(tBu)C(H)C(tBu)] (4-tBu) and (BDI)V[C(tBu)CC(Mes)] (5-Mes), respectively, were synthesized upon reaction with bulkier alkynes, tBu- (tBuCCH) and Mes-acetylene (MesCCH), with 1-OEt2. Furthermore, the reaction of the conjugate acid of 1-OEt2, [(BDI)V≡CtBu(OTf)] (2-OTf), with the conjugated base of phenylacetylene, lithium phenylacetylide (LiCCPh), yields the doubly deprotio-metallacycle complex, [Li(THF)4]{(BDI)V[C(Ph)CC(tBu)CC(Ph)]} (6). Protonation of the doubly deprotio-metallacycle complex 6 yields 6-H+, a catalytically active species toward the polymerization of PhCCH, for which the polymers were also confirmed to be cyclic by SEC studies. Computational mechanistic studies complement the experimental observations and provide insight into the mechanism of cyclic polymer growth. The noninnocence of the supporting dBDI2- ligand and its role in proton shuttling to generate deprotiometallacyclobutadiene (dMCBD) complexes that proposedly culminate in the formation of catalytically active V(III) species are also discussed. This work demonstrates how a dMCBD moiety can react with terminal alkynes to form cyclic polyalkynes.

13.
J Am Chem Soc ; 146(6): 3609-3614, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38290427

ABSTRACT

We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(µ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){µ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.

14.
Angew Chem Int Ed Engl ; 63(8): e202318956, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38109203

ABSTRACT

Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2 -C,C-(Me3 SiC3 SiMe3 )}] (2-M) (BDI=[ArNC(CH3 )]2 CH- , Ar=2,6-i Pr2 C6 H3 ; M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2 ] (1-M, M=Ti, V) with 1,3-dilithioallene [Li2 (Me3 SiC3 SiMe3 )]. Complexes 2-M have been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size-exclusion chromatography (SEC) and intrinsic viscosity studies. Two-electron oxidation of 2-V with nitrous oxide (N2 O) cleanly yields a [VV ] alkylidene-alkynyl oxo complex [(BDI)V(=O){κ1 -C-(=C(SiMe3 )CC(SiMe3 ))}] (3), which lends support for how this scaffold in 2-M might be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3-dianionic allene as a segue into M-C multiple bonds.

15.
Chem Sci ; 14(43): 12277-12282, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969607

ABSTRACT

We show in this work how lithium tellurolate Li(X)nTeCH2SiMe3 (X = THF, n = 1, 1; X = 12-crown-4, n = 2, 2), can serve as an effective Te-atom transfer reagent to all group 5 transition metal halide precursors irrespective of the oxidation state. Mononuclear and bis(telluride) complexes, namely (PNP)M(Te)2 (M = V; Nb, 3; Ta, 4; PNP- = N[2-PiPr2-4-methylphenyl]2), are reported herein including structural and spectroscopic data. Whereas the known complex (PNP)V(Te)2 can be readily prepared from the trivalent precursor (PNP)VCl2, two equiv. of tellurolate, and elemental Te partially solubilized with PMe3, complex 3 can also be similarly obtained following the same procedure but with or without a reductant, Na/NaCl. Complex 4 on the other hand is formed from the addition of four equiv. of tellurolate to (PNP)TaF4. Having access to a triad of (PNP)M(Te)2 systems for group 5 metals has allowed us to compare them using a combination of theory and spectroscopy including Te-L1 edge XANES data.

16.
Inorg Chem ; 62(47): 19238-19247, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37956394

ABSTRACT

While niobium and tantalum are found together in their mineral ores, their respective applications in technology require chemical separation. Nb/Ta separations are challenging due to the similar reactivities displayed by these metals in the solution phase. Coordination complexes of these metals have been studied in the contexts of catalysis, small-molecule activation, and functional group insertion reactivity; relatively few studies exist directly comparing the properties of isostructural Nb/Ta complexes. Such comparisons advance the development of Nb/Ta separation chemistry through the potential for differential reactivity. Here, we explore fundamental physicochemical properties in extensively characterized Nb/Ta coordination complexes [Na(DME)3][MClamp], (Clamp6- = tris-(2-(3',5'-di-tert-butyl-2'-oxyphenyl)amidophenyl)amine; M = Nb, Ta) to advance the understanding of the different electronic, optical, and excited-state properties that these metals exhibit in pi-loaded coordination complexes.

17.
IUCrdata ; 8(Pt 10): x230903, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37936590

ABSTRACT

The synthesis and crystal structure of a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra-fluorido-borate counter-anion and solvating di-chloro-methane, [Ir(C8H12)(C7H13N3)(C18H15P)]BF4·1.5CH2Cl2, is reported. The IrI center of the cationic complex has a distorted square-planar conformation, formed by a bidentate cyclo-octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a triphenylphosphane ligand. There are weak hydrogen-bonding inter-actions between C-H groupings of the iridium complex and F atoms of the [BF4]- counter-ions. The atoms of the COD ligand are disordered over two sets of sites in a 0.65:0.35 ratio and two of the F atoms of the anion are disordered over adjacent sites in a 0.6:0.4 ratio. One of the di-chloro-methane solvent mol-ecules is disordered about an inversion center with 0.5 occupancy.

18.
IUCrdata ; 8(Pt 9): x230784, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37818465

ABSTRACT

An ionic compound consisting of a triazolium cation and bromide anion, C7H14N3 +·Br-, has been synthesized and structurally characterized using single-crystal X-ray diffraction and NMR. The compound crystallizes in the monoclinic space group P21/m with the non-hydrogen atoms of one cation lying on general positions and the others lying on a mirror plane. One bromide ion also lies on the mirror. The extended structure exhibits only weak inter-molecular inter-actions between heterocyclic C-H groups and Br- ions.

19.
J Am Chem Soc ; 145(30): 16374-16382, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37467432

ABSTRACT

Manifesting chemical differences in individual rare earth (RE) element complexes is challenging due to the similar sizes of the tripositive cations and the corelike 4f shell. We disclose a new strategy for differentiating between similarly sized Dy3+ and Y3+ ions through a tailored photochemical reaction of their isostructural complexes in which the f-electron states of Dy3+ act as an energy sink. Complexes RE(hfac)3(NMMO)2 (RE = Dy (2-Dy) and Y (2-Y), hfac = hexafluoroacetylacetonate, and NMMO = N-methylmorpholine-N-oxide) showed variable rates of oxygen atom transfer (OAT) to triphenylphosphine under ultraviolet (UV) irradiation, as monitored by 1H and 19F NMR spectroscopies. Ultrafast transient absorption spectroscopy (TAS) identified the excited state(s) responsible for the photochemical OAT reaction or lack thereof. Competing sensitization pathways leading to excited-state deactivation in 2-Dy through energy transfer to the 4f electron manifold ultimately slows the OAT reaction at this metal cation. The measured rate differences between the open-shell Dy3+ and closed-shell Y3+ complexes demonstrate that using established principles of 4f ion sensitization may deliver new, selective modalities for differentiating the RE elements that do not depend on cation size.

20.
Inorg Chem ; 62(29): 11487-11499, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37428000

ABSTRACT

This article describes the synthesis, characterization, and S-atom transfer reactivity of a series of C3v-symmetric diiron complexes. The iron centers in each complex are coordinated in distinct ligand environments, with one (FeN) bound in a pseudo-trigonal bipyramidal geometry by three phosphinimine nitrogens in the equatorial plane, a tertiary amine, and the second metal center (FeC). FeC is coordinated, in turn, by FeN, three ylidic carbons in a trigonal plane, and, in certain cases, by an axial oxygen donor. The three alkyl donors at FeC form through the reduction of the appended N═PMe3 arms of the monometallic parent complex. The complexes were studied crystallographically, spectroscopically (NMR, UV-vis, and Mössbauer), and computationally (DFT, CASSCF) and found to be high-spin throughout, with short Fe-Fe distances that belie weak orbital overlap between the two metals. Further, the redox nature of this series allowed for the determination that oxidation is localized to the FeC. S-atom transfer chemistry resulted in the formal insertion of a S atom into the Fe-Fe bond of the reduced diiron complex to form a mixture of Fe4S and Fe4S2 products.

SELECTION OF CITATIONS
SEARCH DETAIL