Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37765219

ABSTRACT

The increased prevalence of pulmonary methicillin-resistant Staphylococcus aureus (MRSA) infection in patients living with cystic fibrosis (CF) is concerning due to a correlation with reduced life expectancy and lack of available treatment options. RV94 is a next generation lipoglycopeptide designed for pulmonary delivery that preclinically demonstrated high potency against MRSA in planktonic and protected colonies and improved pulmonary clearance relative to same class molecules. Here, RV94 was formulated into a dry powder for inhalation (DPI) to investigate the localized treatment of pulmonary MRSA presented in a potentially more convenient dosage form. RV94 DPI was generated using a spray-drying process with 12.5 wt% trileucine and demonstrated aerosol characteristics (2.0 µm MMAD and 73% FPF) predictive of efficient pulmonary deposition. In vivo PK from a single dose of RV94 DPI delivered by inhalation to rats yielded lung levels (127 µg/g) much greater than the MRSA minimum inhibitory concentration (0.063 µg/mL), low systemic levels (0.1 µg/mL), and a lung t1/2 equal to 3.5 days. In a rat acute pulmonary MRSA model, a single dose of RV94 DPI delivered by inhalation either up to seven days prior to or 24 h after infection resulted in a statistically significant reduction in lung MRSA titer.

2.
Pharmaceutics ; 15(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986795

ABSTRACT

Treprostinil palmitil (TP), a prodrug of treprostinil, is being developed as an inhalation powder (TPIP) for the treatment of patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension due to interstitial lung disease (PH-ILD). In ongoing human clinical trials, TPIP is administered via a commercially available high resistance (HR) RS01 capsule-based dry powder inhaler (DPI) device manufactured by Berry Global (formerly Plastiape), which utilizes the patient's inspiratory flow to provide the required energy to deagglomerate and disperse the powder for delivery to their lungs. In this study, we characterized the aerosol performance of TPIP in response to changes in inhalation profiles to model more realistic use scenarios, i.e., for reduced inspiratory volumes and with inhalation acceleration rates that differ from those described in the compendia. The emitted dose of TP for all combinations of inhalation profiles and volumes ranged narrowly between 79 and 89% for the 16 and 32 mg TPIP capsules at the 60 LPM inspiratory flow rate but was reduced to 72-76% for the 16 mg TPIP capsule under the scenarios at the 30 LPM peak inspiratory flow rate. There were no meaningful differences in the fine particle dose (FPD) at all conditions at 60 LPM with the 4 L inhalation volume. The FPD values for the 16 mg TPIP capsule ranged narrowly between 60 and 65% of the loaded dose for all inhalation ramp rates with a 4 L volume and at both extremes of ramp rates for inhalation volumes down to 1 L, while the FPD values for the 32 mg TPIP capsule ranged between 53 and 65% of the loaded dose for all inhalation ramp rates with a 4 L volume and at both extremes of ramp rates for inhalation volumes down to 1 L for the 60 LPM flow rate. At the 30 LPM peak flow rate, the FPD values for the 16 mg TPIP capsule ranged narrowly between 54 and 58% of the loaded dose at both extremes of the ramp rates for inhalation volumes down to 1 L. Based on these in vitro findings, the TPIP delivery system appears not to be affected by the changes in inspiratory flow profiles or inspiratory volumes that might be expected to occur in patients with PAH or PH associated with underlying lung conditions such as ILD.

3.
J Pharmacol Exp Ther ; 383(1): 103-116, 2022 10.
Article in English | MEDLINE | ID: mdl-36507843

ABSTRACT

Treprostinil palmitil (TP), a long-acting inhaled pulmonary vasodilator prodrug of treprostinil (TRE), has beneficial effects in a Sugen5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) that compare favorably to the oral phosphodiesterase 5 inhibitor (PDE5) sildenafil. In this study in male Sprague-Dawley rats, a dry powder formulation of TP (TPIP) was compared with inhaled and intravenous TRE and oral selexipag to evaluate inhibition of hemodynamic and pathologic changes in the lungs and heart induced by Su/Hx challenge. Su (20 mg/kg) was injected subcutaneously followed by 3 weeks of Hx (10% O2/balance N2) and then initiation of test article administration over 5 weeks with room air breathing. Hemodynamics and histopathology were measured at the end of the study. Su/Hx challenge approximately doubled the mean pulmonary arterial blood pressure (mPAP) and the Fulton index, decreased cardiac output (CO), doubled the wall thickness and muscularization of the small (10-50 µm) and medium (51-100 µm) sized pulmonary arteries, and increased the percentage of obliterated pulmonary blood vessels. Even though inhaled TRE (65 µg/kg, 4× daily), intravenous TRE (810 ng/kg/min), and oral selexipag (30 mg/kg, twice daily) provided some beneficial effects against the Su/Hx challenge, the overall benefit was generally greater with TPIP at high dose (117 µg/kg, once daily). These results demonstrate that TPIP compares favorably to inhaled and intravenous TRE and oral selexipag with respect to inhibition of the pathophysiological changes induced by Su/Hx challenge in rats. SIGNIFICANCE STATEMENT: Treprostinil palmitil (TP) is a long-acting pulmonary vasodilator prodrug of treprostinil (TRE) formulated for inhaled administration by dry powder [treprostinil palmitil inhalation powder (TPIP)]. Comparison of the activity of TPIP, inhaled and intravenous TRE, and oral selexipag in a Sugen5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension demonstrated that each of these drugs exert protection against the hemodynamic and histopathological changes induced by the Su/Hx challenge, with the greatest effect on these changes produced by TPIP.


Subject(s)
Hypertension, Pulmonary , Prodrugs , Pulmonary Arterial Hypertension , Male , Rats , Animals , Pulmonary Arterial Hypertension/drug therapy , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Hypertension, Pulmonary/drug therapy , Rats, Sprague-Dawley , Administration, Inhalation , Epoprostenol/pharmacology , Vasodilator Agents , Hypoxia/drug therapy
4.
Eur J Pharmacol ; 916: 174484, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34508752

ABSTRACT

Treprostinil palmitil (TP) is a long-acting inhaled pulmonary vasodilator prodrug of treprostinil (TRE). In this study, TP was delivered by inhalation (treprostinil palmitil inhalation suspension, TPIS) in a rat Sugen 5416 (Su)/hypoxia (Hx) model of pulmonary arterial hypertension (PAH) to evaluate its effects on hemodynamics, pulmonary vascular remodeling, and cardiac performance and histopathology. Male Sprague-Dawley rats received Su (20 mg/kg, s.c), three weeks of Hx (10% O2) and 5 or 10 weeks of normoxia (Nx). TPIS was given during the 5-10 week Nx period after the Su/Hx challenge. Su/Hx increased the mean pulmonary arterial blood pressure (mPAP) and right heart size (Fulton index), reduced cardiac output (CO), stroke volume (SV) and heart rate (HR), and increased the thickness and muscularization of the pulmonary arteries along with obliteration of small pulmonary vessels. In both the 8- and 13-week experiments, TPIS at inhaled doses ranging from 39.6 to 134.1 µg/kg, QD, dose-dependently improved pulmonary vascular hemodynamics, reduced the increase in right heart size, enhanced cardiac performance, and attenuated most of the histological changes induced by the Su/Hx challenge. The PDE5 inhibitor sildenafil, administered at an oral dose of 50 mg/kg, BID for 10 weeks, was not as effective as TPIS. These results in Su/Hx challenged rats demonstrate that inhaled TPIS may have superior effects to oral sildenafil. We speculate that the improvement of the pathobiology in this PAH model induced by TPIS involves effects on pulmonary vascular remodeling due to the local effects of TRE in the lungs.


Subject(s)
Epoprostenol/analogs & derivatives , Heart/drug effects , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery/drug effects , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacology , Administration, Inhalation , Administration, Oral , Animals , Collagen/drug effects , Disease Models, Animal , Epoprostenol/administration & dosage , Epoprostenol/pharmacokinetics , Epoprostenol/pharmacology , Hemodynamics/drug effects , Hypoxia/metabolism , Indoles/toxicity , Male , Myocardium/pathology , Phosphodiesterase 5 Inhibitors/administration & dosage , Phosphodiesterase 5 Inhibitors/pharmacology , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Pyrroles/toxicity , Rats, Sprague-Dawley , Sildenafil Citrate/administration & dosage , Sildenafil Citrate/pharmacology , Vascular Remodeling/drug effects , Vasodilator Agents/pharmacokinetics
5.
Int J Mol Sci ; 22(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430435

ABSTRACT

Treprostinil palmitil (TP) is a prodrug of treprostinil (TRE), a pulmonary vasodilator that has been previously formulated for inhaled administration via a nebulizer. TP demonstrates a sustained presence in the lungs with reduced systemic exposure and prolonged inhibition of hypoxia-induced pulmonary vasoconstriction in vivo. Here, we report on re-formulation efforts to develop a more convenient solution-based metered-dose inhaler (MDI) formulation of TP, a treprostinil palmitil inhalation aerosol (TPIA) that matches the pharmacokinetic (PK) and efficacy profile of a nebulized TP formulation, treprostinil palmitil inhalation suspension (TPIS). MDI canisters were manufactured using a two-stage filling method. Aerosol performance, formulation solubility, and chemical stability assays were utilized for in vitro evaluation. For in vivo studies, TPIA formulations were delivered to rodents using an inhalation tower modified for MDI delivery. Using an iterative process involving evaluation of formulation performance in vitro (TP and excipient solubility, chemical stability, physical stability, and aerosol properties) and confirmatory testing in vivo (rat PK and efficacy, guinea pig cough), a promising formulation was identified. The optimized formulation, TPIA-W, demonstrates uniform in vitro drug delivery, a PK profile suitable for a once-daily administration, efficacy lasting at least 12 h in a hypoxic challenge model, and a significantly higher cough threshold than the parent drug treprostinil.


Subject(s)
Aerosols/pharmacology , Epoprostenol/analogs & derivatives , Prodrugs/pharmacology , Pulmonary Arterial Hypertension/drug therapy , Administration, Inhalation , Animals , Disease Models, Animal , Drug Compounding , Epoprostenol/chemistry , Epoprostenol/pharmacology , Guinea Pigs , Humans , Nanoparticles/chemistry , Prodrugs/chemistry , Pulmonary Arterial Hypertension/pathology , Rats , Vasoconstriction/drug effects , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology
6.
Pulm Pharmacol Ther ; 66: 101983, 2021 02.
Article in English | MEDLINE | ID: mdl-33346142

ABSTRACT

BACKGROUND: Treprostinil palmitil (TP) is an inhaled long-acting pulmonary vasodilator prodrug of treprostinil (TRE) that has been formulated for delivery as a suspension (treprostinil palmitil inhalation suspension; TPIS) and as a dry powder (treprostinil palmitil inhalation powder; TPIP). In humans, tachyphylaxis is frequently observed with continuous intravenous (IV) or subcutaneous (SC) infusion of TRE and requires dosage escalation to maintain activity. The aim of the present study was to determine whether tachyphylaxis occurs with repeat daily administration of inhaled TPIS. METHODS: Experiments were performed in male Sprague-Dawley rats prepared with a telemetry probe implanted into the right ventricle to measure the change in right ventricular pulse pressure (ΔRVPP) induced by exposure to a 10% oxygen gas mixture. TPIS (6 mL) at concentrations of 0.25, 0.5, and 1 mM was given by nose-only inhalation using an Aeroneb Pro nebulizer, either as a single administration or daily for 16 or 32 consecutive days. In studies involving consecutive daily administrations of TPIS, the delivered TP dosage was 140.3 µg/kg at 1 mM and ranged from 40.2 to 72.2 µg/kg at 0.5 mM. A separate cohort of telemetered rats received continuous IV infusion of TRE via an Alzet mini-pump at a dosage rate of 250 ng/kg/min for 16 days. Blood and lung tissue samples were obtained, and the concentration of TRE in the plasma and TRE and TP in the lungs were measured approximately 1 h after TPIS administration. RESULTS: Dose-response studies with TPIS administered as a single administration inhibited the hypoxia-induced increase in RVPP in both a concentration-dependent (0.25, 0.5, and 1 mM) and time-dependent (1-24 h) manner. TPIS, given QD or BID at inhaled doses ranging from 40.2 to 140.3 µg/kg for 16 or 32 consecutive days, produced statistically significant (P < .05) inhibition of the increase of RVPP due to hypoxia over the full duration of the dosing periods. By contrast, the inhibition of the hypoxia-induced increase in RVPP observed with IV TRE infusion (250 ng/kg/min) disappeared after 16 days of infusion. The plasma concentrations of TRE were significantly higher after IV TRE (range, 2.85-13.35 ng/mL) compared to inhaled TPIS (range, 0.22-0.73 ng/mL) CONCLUSIONS: There was no evidence of tachyphylaxis with repeat daily dosing of TPIS for a period of up to 32 days. The absence of tachyphylaxis with TPIS is likely related to its local vasodilatory effects within the lungs, combined with an absence of sustained high plasma concentrations of TRE.


Subject(s)
Tachyphylaxis , Vasodilator Agents , Animals , Antihypertensive Agents/therapeutic use , Epoprostenol/analogs & derivatives , Lung , Male , Rats , Rats, Sprague-Dawley , Vasodilator Agents/pharmacology
7.
Pulm Pharmacol Ther ; 49: 104-111, 2018 04.
Article in English | MEDLINE | ID: mdl-29421665

ABSTRACT

INS1009 is a long acting pulmonary vasodilator prodrug of treprostinil (TRE) that is formulated in a lipid nanoparticle for inhaled delivery by nebulization. This study examined the ability of INS1009 to inhibit vasoconstriction in the pulmonary vasculature of rats and dogs and the extent to which local activity within the lung contributes to its activity. Rats received a single dose of INS1009 by nose-only inhalation or were given a continuous intravenous (i.v.) infusion of TRE, followed by an i.v. challenge of the thromboxane mimetic pulmonary vasoconstrictor U46619 and the increase in pulmonary arterial pressure (PAP) was measured. In beagle dogs, INS1009 was given by inhalation via face mask and TRE was given by continuous i.v. infusion; vasoconstriction was then induced by inhaled hypoxia with reduction of FIO2 to 0.10. Changes in the dog's right ventricular pulse pressure (RVPP) were measured using implanted telemetry probes. Blood samples were collected in rats and dogs immediately after the challenge to measure the plasma TRE concentration. Exposure of rats to inhaled INS1009 (0.5, 3.0 and 20.9 µg/kg) inhibited the U46619-induced increase in PAP at all doses up to 6 h with statistically significant inhibition up to 24 h with the pooled dose-response data. The concentration of TRE in the plasma at which PAP was reduced by 50% was approximately 60-fold lower for INS1009 (EC50 = 0.08 ng/mL) as compared to i.v. TRE (EC50 = 4.9 ng/mL). In dogs, INS1009 (2.7-80.9 µg/kg) inhibited the hypoxia-induced increase in RVPP at all doses up to 6 h with activity once again observed with the pooled dose-response of 10 µg/kg and higher at 24 h. The concentration of TRE in the plasma at which RVPP was reduced by 50% was approximately 550-fold lower for INS1009 (EC50 = 0.0075 ng/mL) as compared to i.v. TRE (EC50 = 4.1 ng/mL). These studies, in two species and by two different pulmonary vasoconstrictor challenges, demonstrate that inhaled INS1009 not only has long-acting vasodilatory effects but also that the local activity within the lung contributes to this response. Therefore, INS1009 may offer the opportunity to effect pulmonary vasodilation for long periods but with substantially lower systemic exposure than infused TRE.


Subject(s)
Antihypertensive Agents/administration & dosage , Epoprostenol/analogs & derivatives , Nanoparticles , Vasodilation/drug effects , Administration, Inhalation , Animals , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Arterial Pressure/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Delivery Systems , Epoprostenol/administration & dosage , Epoprostenol/pharmacokinetics , Epoprostenol/pharmacology , Infusions, Intravenous , Lipids/chemistry , Male , Prodrugs , Rats , Rats, Wistar , Species Specificity , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...