Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 9(5): 2292-2300, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37126371

ABSTRACT

The edible nature of many plants makes leaves particularly useful as scaffolds for the development of cultured meat, where animal tissue is grown in the laboratory setting. Recently, we demonstrated that decellularized spinach leaves can serve as scaffolds to grow and differentiate cells for cultured meat products. However, conventional decellularization methods use solutions that are not considered safe for use in food, such as organic solvents (hexanes) and detergents (triton X-100 (TX100)). This study modified decellularization protocols to incorporate detergents that are regulated (REG) by the United States Food and Drug Administration (FDA) for use in food, such as Polysorbate 20 (PS20), and eliminates the use of hexanes for cuticle removal. Spinach leaves were decellularized with sodium dodecyl sulfate and then with either TX100 (control) or PS20. The average DNA content for TX100 samples and PS20 samples was similar (1.3 ± 0.07 vs 1.3 ± 0.05 ng/mg; TX100 vs PS20, p = ns). The importance of cuticle removal was tested by removing hexanes from the protocol. Groups that included the cuticle removal step exhibited an average reduction in DNA content of approximately 91.7%, and groups that omitted the cuticle removal step exhibited an average reduction of approximately 90.3% (p = ns), suggesting that the omission of the cuticle removal step did not impede decellularization. Lastly, primary bovine satellite cells (PBSCs) were cultured for 7 days (d) on the surface of spinach leaves decellularized using the REG protocol. After the 7 d incubation period, PBSCs grown on the surface of REG scaffolds had an average viability of approximately 97.4%. These observations suggest that the REG protocol described in this study is an effective decellularization method, more closely adhering to food safety guidelines, that could be implemented in lab grown meat and alternative protein products.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Animals , Cattle , Tissue Engineering/methods , Detergents/pharmacology , Hexanes/pharmacology , Extracellular Matrix , Octoxynol/pharmacology , DNA/pharmacology
2.
J Biomed Mater Res A ; 111(9): 1309-1321, 2023 09.
Article in English | MEDLINE | ID: mdl-36932841

ABSTRACT

Cardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplantation. An alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell-populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS-CM), which is crucial for increasing scaffold contractile properties. hiPS-CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin-43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.


Subject(s)
Heart Failure , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Tissue Engineering/methods , Fibrin , Induced Pluripotent Stem Cells/metabolism , Myocardium , Heart Failure/metabolism , Tissue Scaffolds
3.
Biomed Eng Educ ; 2(1): 1-16, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35599985

ABSTRACT

This paper provides a synopsis of discussions related to the Learning Environments track of the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. The Learning Environments track had six interactive workshops that provided facilitated discussion and provide recommendations in the areas of: (1) Authentic project/problem identification in clinical, industrial, and global settings, (2) Experiential problem/project-based learning within courses, (3) Experiential learning in co-curricular learning settings, (4) Team-based learning, (5) Teaching to reach a diverse classroom, and (6) innovative platforms and pedagogy. A summary of the findings, best practices and recommendations from each of the workshops is provided under separate headings below, and a list of resources is provided at the end of this paper.

4.
J Biomed Mater Res A ; 108(10): 2123-2132, 2020 10.
Article in English | MEDLINE | ID: mdl-32323417

ABSTRACT

Myocardial infarction (MI) results in the death of cardiac tissue, decreases regional contraction, and can lead to heart failure. Tissue engineered cardiac patches containing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) can restore contractile function. However, cells within thick patches require vasculature for blood flow. Recently, we demonstrated fibronectin coated decellularized leaves provide a suitable scaffold for hiPS-CMs. Yet, the necessity of this additional coating step is unclear. Therefore, we compared hiPS-CM behavior on decellularized leaves coated with collagen IV or fibronectin extracellular matrix (ECM) proteins to noncoated leaves for up to 21 days. Successful coating was verified by immunofluorescence. Similar numbers of hiPS-CMs adhered to coated and noncoated decellularized leaves for 21 days. At Day 14, collagen IV coated leaves contracted more than noncoated leaves (3.25 ± 0.39% vs. 1.54 ± 0.60%; p < .05). However, no differences in contraction were found between coated leaves, coated tissue culture plastic (TCP), noncoated leaves, or noncoated TCP at other time points. No significant differences were observed in hiPS-CM spreading or sarcomere lengths on leaves with or without coating. This study demonstrates that cardiac scaffolds can be created from decellularized leaves without ECM coatings. Noncoated decellularized leaf surfaces facilitate robust cell attachment for an engineered tissue patch.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Plant Leaves/chemistry , Spinacia oleracea/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Differentiation , Cell Line , Extracellular Matrix Proteins/chemistry , Humans , Myocardial Infarction/therapy , Tissue Engineering/methods
5.
Tissue Eng Part A ; 26(9-10): 543-555, 2020 05.
Article in English | MEDLINE | ID: mdl-31663421

ABSTRACT

Current reconstruction methods of the laryngotracheal segment fail to replace the complex functions of the human larynx. Bioengineering approaches to reconstruction have been limited by the complex tissue compartmentation of the larynx. We attempted to overcome this limitation by bioengineering laryngeal grafts from decellularized canine laryngeal scaffolds recellularized with human primary cells under one uniform culture medium condition. First, we developed laryngeal scaffolds which were generated by detergent perfusion-decellularization over 9 days and preserved their glycosaminoglycan content and biomechanical properties of a native larynx. After subcutaneous implantations in rats for 14 days, the scaffolds did not elicit a CD3 lymphocyte response. We then developed a uniform culture medium that strengthened the endothelial barrier over 5 days after an initial growth phase. Simultaneously, this culture medium supported airway epithelial cell and skeletal myoblast growth while maintaining their full differentiation and maturation potential. We then applied the uniform culture medium composition to whole laryngeal scaffolds seeded with endothelial cells from both carotid arteries and external jugular veins and generated reendothelialized arterial and venous vascular beds. Under the same culture medium, we bioengineered epithelial monolayers onto laryngeal mucosa and repopulated intrinsic laryngeal muscle. We were then able to demonstrate early muscle formation in an intramuscular transplantation model in immunodeficient mice. We supported formation of three humanized laryngeal tissue compartments under one uniform culture condition, possibly a key factor in developing complex, multicellular, ready-to-transplant tissue grafts. Impact Statement For patients undergoing laryngectomy, no reconstruction methods are available to restore the complex functions of the human larynx. The first promising preclinical results have been achieved with the use of biological scaffolds fabricated from decellularized tissue. However, the complexity of laryngeal tissue composition remains a hurdle to create functional viable grafts, since previously each cell type requires tailored culture conditions. In this study, we report the de novo formation of three humanized laryngeal tissue compartments under one uniform culture condition, a possible keystone in creating vital composite tissue grafts for laryngeal regeneration.


Subject(s)
Laryngeal Muscles/cytology , Larynx/cytology , Tissue Scaffolds/chemistry , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Dogs , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice, SCID , Rats, Sprague-Dawley , Tissue Engineering/methods
6.
Article in English | MEDLINE | ID: mdl-30838213

ABSTRACT

The first successful heart transplant 50 years ago by Dr.Christiaan Barnard in Cape Town, South Africa revolutionized cardiovascular medicine and research. Following this procedure, numerous other advances have reduced many contributors to cardiovascular morbidity and mortality; yet, cardiovascular disease remains the leading cause of death globally. Various unmet needs in cardiovascular medicine affect developing and underserved communities, where access to state-of-the-art advances remain out of reach. Addressing the remaining challenges in cardiovascular medicine in both developed and developing nations will require collaborative efforts from basic science researchers, engineers, industry, and clinicians. In this perspective, we discuss the advancements made in cardiovascular medicine since Dr. Barnard's groundbreaking procedure and ongoing research efforts to address these medical issues. Particular focus is given to the mission of the International Society for Applied Cardiovascular Biology (ISACB), which was founded in Cape Town during the 20th celebration of the first heart transplant in order to promote collaborative and translational research in the field of cardiovascular medicine.

7.
Front Cardiovasc Med ; 5: 52, 2018.
Article in English | MEDLINE | ID: mdl-29942806

ABSTRACT

Stem cell therapy has the potential to regenerate cardiac function after myocardial infarction. In this study, we sought to examine if fibrin microthread technology could be leveraged to develop a contractile fiber from human pluripotent stem cell derived cardiomyocytes (hPS-CM). hPS-CM seeded onto fibrin microthreads were able to adhere to the microthread and began to contract seven days after initial seeding. A digital speckle tracking algorithm was applied to high speed video data (>60 fps) to determine contraction behaviour including beat frequency, average and maximum contractile strain, and the principal angle of contraction of hPS-CM contracting on the microthreads over 21 days. At day 7, cells seeded on tissue culture plastic beat at 0.83 ± 0.25 beats/sec with an average contractile strain of 4.23±0.23%, which was significantly different from a beat frequency of 1.11 ± 0.45 beats/sec and an average contractile strain of 3.08±0.19% at day 21 (n = 18, p < 0.05). hPS-CM seeded on microthreads beat at 0.84 ± 0.15 beats/sec with an average contractile strain of 3.56±0.22%, which significantly increased to 1.03 ± 0.19 beats/sec and 4.47±0.29%, respectively, at 21 days (n = 18, p < 0.05). At day 7, 27% of the cells had a principle angle of contraction within 20 degrees of the microthread, whereas at day 21, 65% of hPS-CM were contracting within 20 degrees of the microthread (n = 17). Utilizing high speed calcium transient data (>300 fps) of Fluo-4AM loaded hPS-CM seeded microthreads, conduction velocities significantly increased from 3.69 ± 1.76 cm/s at day 7 to 24.26 ± 8.42 cm/s at day 21 (n = 5-6, p < 0.05). hPS-CM seeded microthreads exhibited positive expression for connexin 43, a gap junction protein, between cells. These data suggest that the fibrin microthread is a suitable scaffold for hPS-CM attachment and contraction. In addition, extended culture allows cells to contract in the direction of the thread, suggesting alignment of the cells in the microthread direction.

8.
J Vis Exp ; (135)2018 05 31.
Article in English | MEDLINE | ID: mdl-29912197

ABSTRACT

The autologous, synthetic, and animal-derived grafts currently used as scaffolds for tissue replacement have limitations due to low availability, poor biocompatibility, and cost. Plant tissues have favorable characteristics that make them uniquely suited for use as scaffolds, such as high surface area, excellent water transport and retention, interconnected porosity, preexisting vascular networks, and a wide range of mechanical properties. Two successful methods of plant decellularization for tissue engineering applications are described here. The first method is based on detergent baths to remove cellular matter, which is similar to previously established methods used to clear mammalian tissues. The second is a detergent-free method adapted from a protocol that isolates leaf vasculature and involves the use of a heated bleach and salt bath to clear the leaves and stems. Both methods yield scaffolds with comparable mechanical properties and low cellular metabolic impact, thus allowing the user to select the protocol which better suits their intended application.


Subject(s)
Plant Leaves/chemistry , Plants/chemistry , Tissue Engineering/methods , Animals , Tissue Scaffolds
9.
Tissue Eng Part C Methods ; 23(8): 445-454, 2017 08.
Article in English | MEDLINE | ID: mdl-28562232

ABSTRACT

Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.


Subject(s)
Calcium/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Optics and Photonics/methods , Pluripotent Stem Cells/cytology , Aniline Compounds/metabolism , Biomechanical Phenomena/drug effects , Fluorescence , Humans , Isoproterenol/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/drug effects , Time Factors , Xanthenes/metabolism
10.
Tissue Eng Part A ; 23(13-14): 696-707, 2017 07.
Article in English | MEDLINE | ID: mdl-28323545

ABSTRACT

Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be utilized for perfusion decellularization and, ultimately, anastomosis to the recipient vascular system after precellularization. The observed favorable immunological response and good tissue integration indicate the substantial regenerative potential of this platform.


Subject(s)
Materials Testing , Skin , Surgical Flaps , Tissue Scaffolds/chemistry , Animals , Rats , Rats, Sprague-Dawley , Swine , Swine, Miniature
11.
Adv Healthc Mater ; 6(8)2017 Apr.
Article in English | MEDLINE | ID: mdl-28319334

ABSTRACT

The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells.


Subject(s)
Cell Culture Techniques/methods , Marantaceae/chemistry , Mesenchymal Stem Cells/metabolism , Petroselinum/chemistry , Tissue Scaffolds/chemistry , Cell Line , Humans , Mesenchymal Stem Cells/cytology
12.
Biomaterials ; 125: 13-22, 2017 05.
Article in English | MEDLINE | ID: mdl-28222326

ABSTRACT

Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass.


Subject(s)
Perfusion/methods , Plant Leaves/chemistry , Plant Vascular Bundle/chemistry , Stem Cells/cytology , Stem Cells/physiology , Tissue Engineering/instrumentation , Tissue Scaffolds , Batch Cell Culture Techniques/instrumentation , Cell-Free System/chemistry , Cells, Cultured , Equipment Design , Extracellular Matrix/chemistry , Humans , Petroselinum/chemistry , Spinacia oleracea/chemistry , Tissue Engineering/methods
13.
ACS Biomater Sci Eng ; 3(7): 1394-1403, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-33429697

ABSTRACT

The ability to modulate the mechanical properties, and cell alignment within a cardiac patch without hindering cell functionality may have significant impact on developing therapies for treating myocardial infarctions. We developed fibrin-based composite layers comprising aligned microthreads distributed uniformly throughout a hydrogel. Increasing the microthread volume fraction (∼5%, 11% and 22%) significantly increased the moduli of the scaffolds (20.6 ± 8.1, 46.4 ± 23.0, and 97.5 ± 49.3 kPa, respectively), p < 0.05. Analyses of cell-mediated contractile strains and frequencies showed no significant differences among composite layers and fibrin hydrogel controls, suggesting that microthread-based composite layers exhibit similar active functional properties. Cell orientation in composite layers suggests an increase in nuclear alignment within 100 µm of fibrin microthreads and suggests that microthreads influence the alignment in adjacent areas. In this study, we developed composite layers with tunable, mechanical patch properties that improve cell alignment and support cell functionality.

14.
J Tissue Eng Regen Med ; 11(1): 220-230, 2017 01.
Article in English | MEDLINE | ID: mdl-24753390

ABSTRACT

Current cardiac cell therapies cannot effectively target and retain cells in a specific area of the heart. Cell-seeded biological sutures were previously developed to overcome this limitation, demonstrating targeted delivery with > 60% cell retention. In this study, both cell-seeded and non-seeded fibrin-based biological sutures were implanted into normal functioning rat hearts to determine the effects on mechanical function and fibrotic response. Human mesenchymal stem cells (hMSCs) were used based on previous work and established cardioprotective effects. Non-seeded or hMSC-seeded sutures were implanted into healthy athymic rat hearts. Before cell seeding, hMSCs were passively loaded with quantum dot nanoparticles. One week after implantation, regional stroke work index and systolic area of contraction (SAC) were evaluated on the epicardial surface above the suture. Cell delivery and retention were confirmed by quantum dot tracking, and the fibrotic tissue area was evaluated. Non-seeded biological sutures decreased SAC near the suture from 0.20 ± 0.01 measured in sham hearts to 0.08 ± 0.02, whereas hMSC-seeded biological sutures dampened the decrease in SAC (0.15 ± 0.02). Non-seeded sutures also displayed a small amount of fibrosis around the sutures (1.0 ± 0.1 mm2 ). Sutures seeded with hMSCs displayed a significant reduction in fibrosis (0.5 ± 0.1 mm2 , p < 0.001), with quantum dot-labelled hMSCs found along the suture track. These results show that the addition of hMSCs attenuates the fibrotic response observed with non-seeded sutures, leading to improved regional mechanics of the implantation region. Copyright © 2014 John Wiley & Sons, Ltd.


Subject(s)
Heart/physiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Sutures , Animals , Cell Differentiation , Cell Survival , Cell Transplantation , Fibrin/pharmacology , Fibrosis , Humans , Male , Quantum Dots , Rats , Rats, Nude , Stress, Mechanical , Tissue Engineering , Tissue Scaffolds
15.
Biores Open Access ; 5(1): 249-60, 2016.
Article in English | MEDLINE | ID: mdl-27610271

ABSTRACT

Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area was significantly decreased in the unseeded group compared with that in the hMSC-seeded group (p < 0.05). This study demonstrated that hMSC-seeded biological sutures are a method to deliver cells to the infarcted myocardium and have treatment potential.

16.
Curr Stem Cell Rep ; 2(2): 147-157, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27642550

ABSTRACT

Native tissue structures possess elaborate extracellular matrix (ECM) architectures that inspire the design of fibrous structures in the field of regenerative medicine. We review the literature with respect to the successes and failures, as well as the future promise of biopolymer microthreads as scaffolds to promote endogenous and exogenous tissue regeneration. Biomimetic microthread tissue constructs have been proposed for the functional regeneration of tendon, ligament, skeletal muscle, and ventricular myocardial tissues. To date, biopolymer microthreads have demonstrated promising results as materials to recapitulate the hierarchical structure of simple and complex tissues and well as biochemical signaling cues to direct cell-mediated tissue regeneration. Biopolymer microthreads have also demonstrated exciting potential as a platform technology for the targeted delivery of stem cells and therapeutic molecules. Future studies will focus on the design of microthread-based tissue analogs that strategically integrate growth factors and progenitor cells to temporally direct cell-mediated processes that promote enhanced functional tissue regeneration.

17.
J Biomed Mater Res A ; 104(9): 2271-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27101153

ABSTRACT

Cell therapy has the potential to treat different pathologies, including myocardial infarctions (heart attacks), although cell engraftment remains elusive with most delivery methods. Biological sutures composed of fibrin have been shown to effectively deliver human mesenchymal stem cell (MSC) to infarcted hearts. However, human MSCs rapidly degrade fibrin making cell seeding and delivery time sensitive. To delay the degradation process, we propose using Aprotinin, a proteolytic enzyme inhibitor that has been shown to slow fibrinolysis. Human MSCs seeded on fibrin sutures and incubated with Aprotinin demonstrated similar cell viability, examined using a LIVE/DEAD stain, to controls. No differences in proliferation, as determined by Ki-67 presence, were observed. Human MSCs incubated in Aprotinin differentiated into adipocytes, osteocytes, and chondrocytes, confirming multipotency. The number of cells adhered to fibrin sutures increased through Aprotinin supplementation at 2, 3, and 5 day time points. Uniaxial tensile testing was used to examine the effect of Aprotinin on suture integrity. Sutures exposed to Aprotinin had higher ultimate tensile strength and modulus when compared to sutures exposed to standard growth media. Fibrin sutures incubated in Aprotinin had larger diameters and less fibrin degradation products compared to the controls, confirming decreased fibrinolysis. These data suggest that Aprotinin can reduce degradation of fibrin sutures without significant effects on MSC function, providing a novel method for extending the implantation window and increasing the number of cells delivered via fibrin sutures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2271-2279, 2016.


Subject(s)
Aprotinin , Cell Differentiation/drug effects , Fibrin , Mesenchymal Stem Cells/metabolism , Sutures , Aprotinin/chemistry , Aprotinin/pharmacology , Cell Line , Fibrin/chemistry , Fibrin/pharmacology , Humans , Mesenchymal Stem Cells/cytology
18.
Circ Res ; 118(1): 56-72, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26503464

ABSTRACT

RATIONALE: More than 25 million individuals have heart failure worldwide, with ≈4000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only ≈2500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. OBJECTIVE: The objective of this study is to translate previous work to human scale and clinically relevant cells for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human induced pluripotent stem cell-derived cardiomyocytes. METHODS AND RESULTS: To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiomyocytes derived from nontransgenic human induced pluripotent stem cells and generated tissues of increasing 3-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole-heart scaffolds with human induced pluripotent stem cell-derived cardiomyocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue and showed electrical conductivity, left ventricular pressure development, and metabolic function. CONCLUSIONS: Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human induced pluripotent stem cell-derived cardiomyocytes and enable the bioengineering of functional human myocardial-like tissue of multiple complexities.


Subject(s)
Bioengineering/methods , Extracellular Matrix/physiology , Myocardium/cytology , Pluripotent Stem Cells/physiology , Adult , Aged , Cell Differentiation/physiology , Female , Humans , Male , Middle Aged
19.
J Vasc Surg ; 60(5): 1340-1347, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24139980

ABSTRACT

OBJECTIVE: Intimal hyperplasia (IH) continues to plague the durability of vascular interventions. Employing a validated murine model, ultrasound biomicroscopy, and speckle-tracking algorithms, we tested the hypothesis that reduced cyclic arterial wall strain results in accentuated arterial wall IH. METHODS: A 9-0 suture was tied around the left mouse (n = 10) common carotid artery and a 35-gauge (outer diameter = 0.14 mm) blunt mandrel. We previously showed that mandrel removal results in a ∼78% reduction in diameter and ∼85% reduction in flow, with subsequent delayed induction of IH by day 28. Preoperative, postoperative day-4 (before measurable IH), and postoperative day-27 circumferential wall strains were measured in locations 1, 2, and 3 mm proximal to the stenosis and in the same locations on the contralateral (nonstenosed) carotid. At postoperative day 28, arteries were perfusion fixed and arterial wall morphology was assessed microscopically in the same regions. RESULTS: Strains were the same in all locations preoperatively. Wall strain was decreased in all regions proximal to the stenosis by day 4 (0.26 ± 0.01 to 0.11 ± 0.02; P < .001), while strains remained unchanged for the contralateral artery (P = .45). No statistical regional differences in mean strain or IH were noted at any time point for the experimental or contralateral artery. Based on the median, regions were divided into those with low strain (≤0.1) and high strain (>0.1). Average preoperative strains in both groups were the same (0.27 ± 0.09 and 0.27 ± 0.08). All segments in the low-strain group (n = 13) demonstrated significant IH formation by day 28, while only 31% of the high strain group demonstrated any detectable IH at day 28. (Mean low-strain intimal thickness = 32 ± 20 µm, high strain = 8.0 ± 16 µm; P < .01). Changes in cross-sectional area at diastole drove the reduction in strain in the low-strain group, increasing significantly from preoperatively to day 4 (P = .04), while lumen cross-section at systole remained unchanged (P = .46). Cross-sectional area at diastole and systole in the high-strain group remained unchanged from preoperatively to day 4 (P = .67). CONCLUSIONS: Early reduction in arterial wall strain is associated with subsequent development of hemodynamically induced IH.


Subject(s)
Carotid Artery, Common/physiopathology , Carotid Stenosis/physiopathology , Hemodynamics , Neointima , Animals , Blood Flow Velocity , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/pathology , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/pathology , Disease Models, Animal , Hyperplasia , Male , Mice, Inbred C57BL , Microscopy, Acoustic , Regional Blood Flow , Stress, Mechanical , Time Factors
20.
Comput Struct ; 122: 78-87, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23667272

ABSTRACT

Patients with repaired tetralogy of Fallot account for the majority of cases with late onset right ventricle (RV) failure. A new surgical procedure placing an elastic band in the right ventricle is proposed to improve RV function measured by ejection fraction. A multiphysics modeling approach is developed to combine cardiac magnetic resonance imaging, modeling, tissue engineering and mechanical testing to demonstrate feasibility of the new surgical procedure. Our modeling results indicated that the new surgical procedure has the potential to improve right ventricle ejection fraction by 2-7% which compared favorably with recently published drug trials to treat LV heart failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...