Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gait Posture ; 109: 220-225, 2024 03.
Article in English | MEDLINE | ID: mdl-38364508

ABSTRACT

BACKGROUND: A common gait retraining goal for runners is reducing vertical ground reaction force (GRF) loading rates (LRs), which have been associated with injury. Many gait retraining programs prioritize an internal focus of attention, despite evidence supporting an external focus of attention when a specific outcome is desired (e.g., LR reduction). RESEARCH QUESTION: Does an external focus of attention (using cues for quiet, soft landings) result in comparable reductions in LRs to those achieved using a common internal focus (forefoot striking while barefoot)? METHODS: This observational study included 37 injured runners (18 male; mean age 36 (14) years) at the OMITTED Running Center. Runners wore inertial measurement units over the distal-medial tibia while running on an instrumented treadmill at a self-selected speed. Data were collected for three conditions: 1) Shod-Control (wearing shoes, without cues); 2) Shod-Quiet (wearing shoes, cues for quiet, soft landings); and 3) Barefoot-FFS (barefoot, cues for forefoot strike (FFS)). Within-subject variables were compared across conditions: vertical instantaneous loading rate (LR, primary outcome); vertical stiffness during initial loading; peak vertical GRF; peak vertical tibial acceleration (TA); and cadence. RESULTS: Vertical LR, stiffness, and TA were lower in the Shod-Quiet compared to Shod-Control p < 0.001). Peak vertical GRF and cadence were not different between Shod-Quiet and Shod-Control. Reductions in stiffness and LR were similar between Shod-Quiet and Barefoot-FFS, and GRF in Barefoot-FFS remained similar to both shod conditions. However, runners demonstrated additional reductions in TA and increased cadence when transitioning from Shod-Quiet to the Barefoot-FFS condition (p < 0.05). SIGNIFICANCE: These results suggests that a focus on quiet, soft landings may be an effective gait retraining method for future research.


Subject(s)
Cues , Foot , Adult , Humans , Male , Biomechanical Phenomena , Gait , Hand , Shoes , Tibia , Female , Young Adult , Middle Aged
2.
Sensors (Basel) ; 23(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447897

ABSTRACT

While some studies have found strong correlations between peak tibial accelerations (TAs) and early stance ground reaction forces (GRFs) during running, others have reported inconsistent results. One potential explanation for this is the lack of a standard orientation for the sensors used to collect TAs. Therefore, our aim was to test the effects of an established sensor reorientation method on peak Tas and their correlations with GRFs. Twenty-eight runners had TA and GRF data collected while they ran at a self-selected speed on an instrumented treadmill. Tibial accelerations were reoriented to a body-fixed frame using a simple calibration trial involving quiet standing and kicking. The results showed significant differences between raw and reoriented peak TAs (p < 0.01) for all directions except for the posterior (p = 0.48). The medial and lateral peaks were higher (+0.9-1.3 g), while the vertical and anterior were lower (-0.5-1.6 g) for reoriented vs. raw accelerations. Correlations with GRF measures were generally higher for reoriented TAs, although these differences were fairly small (Δr2 = 0.04-0.07) except for lateral peaks (Δr2 = 0.18). While contingent on the position of the IMU on the tibia used in our study, our results first showed systematic differences between reoriented and raw peak accelerations. However, we did not find major improvements in correlations with GRF measures for the reorientation method. This method may still hold promise for further investigation and development, given that consistent increases in correlations were found.


Subject(s)
Running , Tibia , Acceleration , Biomechanical Phenomena , Exercise Test/methods , Humans , Male , Female , Adult , Middle Aged
3.
J Clin Med ; 11(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362725

ABSTRACT

Despite its positive influence on physical and mental wellbeing, running is associated with a high incidence of musculoskeletal injury. Potential modifiable risk factors for running-related injury have been identified, including running biomechanics. Gait retraining is used to address these biomechanical risk factors in injured runners. While recent systematic reviews of biomechanical risk factors for running-related injury and gait retraining have been conducted, there is a lack of information surrounding the translation of gait retraining for injured runners into clinical settings. Gait retraining studies in patients with patellofemoral pain syndrome have shown a decrease in pain and increase in functionality through increasing cadence, decreasing hip adduction, transitioning to a non-rearfoot strike pattern, increasing forward trunk lean, or a combination of some of these techniques. This literature suggests that gait retraining could be applied to the treatment of other injuries in runners, although there is limited evidence to support this specific to other running-related injuries. Components of successful gait retraining to treat injured runners with running-related injuries are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...