Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2405231121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990952

ABSTRACT

We report that ~1.8% of all mesothelioma patients and 4.9% of those younger than 55, carry rare germline variants of the BRCA1 associated RING domain 1 (BARD1) gene that were predicted to be damaging by computational analyses. We conducted functional assays, essential for accurate interpretation of missense variants, in primary fibroblasts that we established in tissue culture from a patient carrying the heterozygous BARD1V523A mutation. We found that these cells had genomic instability, reduced DNA repair, and impaired apoptosis. Investigating the underlying signaling pathways, we found that BARD1 forms a trimeric protein complex with p53 and SERCA2 that regulates calcium signaling and apoptosis. We validated these findings in BARD1-silenced primary human mesothelial cells exposed to asbestos. Our study elucidated mechanisms of BARD1 activity and revealed that heterozygous germline BARD1 mutations favor the development of mesothelioma and increase the susceptibility to asbestos carcinogenesis. These mesotheliomas are significantly less aggressive compared to mesotheliomas in asbestos workers.


Subject(s)
Calcium Signaling , DNA Repair , Genetic Predisposition to Disease , Germ-Line Mutation , Mesothelioma , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Humans , DNA Repair/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mesothelioma/genetics , Calcium Signaling/genetics , Female , Male , Middle Aged , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Fibroblasts/metabolism , Asbestos/toxicity , Genomic Instability
2.
Proc Natl Acad Sci U S A ; 120(39): e2307999120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729199

ABSTRACT

Asbestos is the main cause of malignant mesothelioma. Previous studies have linked asbestos-induced mesothelioma to the release of HMGB1 from the nucleus to the cytoplasm, and from the cytoplasm to the extracellular space. In the cytoplasm, HMGB1 induces autophagy impairing asbestos-induced cell death. Extracellularly, HMGB1 stimulates the secretion of TNFα. Jointly, these two cytokines kick-start a chronic inflammatory process that over time promotes mesothelioma development. Whether the main source of extracellular HMGB1 were the mesothelial cells, the inflammatory cells, or both was unsolved. This information is critical to identify the targets and design preventive/therapeutic strategies to interfere with asbestos-induced mesothelioma. To address this issue, we developed the conditional mesothelial HMGB1-knockout (Hmgb1ΔpMeso) and the conditional myelomonocytic-lineage HMGB1-knockout (Hmgb1ΔMylc) mouse models. We establish here that HMGB1 is mainly produced and released by the mesothelial cells during the early phases of inflammation following asbestos exposure. The release of HMGB1 from mesothelial cells leads to atypical mesothelial hyperplasia, and in some animals, this evolves over the years into mesothelioma. We found that Hmgb1ΔpMeso, whose mesothelial cells cannot produce HMGB1, show a greatly reduced inflammatory response to asbestos, and their mesothelial cells express and secrete significantly reduced levels of TNFα. Moreover, the tissue microenvironment in areas of asbestos deposits displays an increased fraction of M1-polarized macrophages compared to M2 macrophages. Supporting the biological significance of these findings, Hmgb1ΔpMeso mice showed a delayed and reduced incidence of mesothelioma and an increased mesothelioma-specific survival. Altogether, our study provides a biological explanation for HMGB1 as a driver of asbestos-induced mesothelioma.


Subject(s)
Asbestos , HMGB1 Protein , Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Tumor Necrosis Factor-alpha/genetics , HMGB1 Protein/genetics , Mesothelioma/chemically induced , Mesothelioma/genetics , Asbestos/toxicity , Inflammation , Tumor Microenvironment
3.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656861

ABSTRACT

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mesothelioma, Malignant , Mesothelioma , Ubiquitin Thiolesterase , Humans , Heterozygote , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mesothelioma/genetics , Mesothelioma/metabolism , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/complications , Mutation , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34815344

ABSTRACT

Carriers of heterozygous germline BAP1 mutations (BAP1+/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1+/- cells secrete increased amounts of HMGB1, and that BAP1+/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.


Subject(s)
Asbestos , HMGB1 Protein/chemistry , Histone Deacetylase 1/chemistry , Tumor Suppressor Proteins/chemistry , Ubiquitin Thiolesterase/chemistry , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis , Cell Nucleus/metabolism , Female , Gene-Environment Interaction , Germ-Line Mutation , HMGB1 Protein/genetics , Heterozygote , Histone Deacetylase 1/genetics , Incidence , Inflammation , Male , Mesothelioma/metabolism , Mice , Mutation , Prognosis , Protein Binding , Tumor Suppressor Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin Thiolesterase/metabolism
6.
J Cell Physiol ; 236(5): 3406-3419, 2021 05.
Article in English | MEDLINE | ID: mdl-33107103

ABSTRACT

High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.


Subject(s)
Endotoxemia/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Macrophages/metabolism , Alarmins/metabolism , Animals , Cytokines/metabolism , Humans
7.
Precis Cancer Med ; 42021 Sep.
Article in English | MEDLINE | ID: mdl-35098108

ABSTRACT

OBJECTIVE: The aim of this review is addressing the mechanisms of asbestos carcinogenesis, including chronic inflammation and autophagy-mediated cell survival, and propose potential innovative therapeutic targets to prevent mesothelioma development or improve drug efficacy by reducing inflammation and autophagy. BACKGROUND: Diffuse malignant pleural mesothelioma is an aggressive cancer predominantly related to chronic inflammation caused by asbestos exposure. Millions of individuals have been exposed to asbestos or to other carcinogenic mineral fibers occupationally or environmentally, resulting in an increased risk of developing mesothelioma. Overall patient survival rates are notably low (about 8-14 months from the time of diagnosis) and mesothelioma is resistant to existing therapies. Additionally, individuals carrying inactivating germline mutations in the BRCA-associated protein 1 (BAP1) gene and other genes are predisposed to developing cancers, prevalently mesothelioma. Their risk of developing mesothelioma further increases upon exposure to asbestos. Recent studies have revealed the mechanisms and the role of inflammation in asbestos carcinogenesis. Biomarkers for asbestos exposure and malignant mesothelioma have also been identified. These findings are leading to the development of novel therapeutic approaches to prevent or delay the growth of mesothelioma. METHODS: Review of full length manuscripts published in English from January 1980 to February 2021 gathered from PubMed.gov from the National Center of Biotechnology Information and the National Library of Medicine were used to inform this review. CONCLUSION: Key regulators of chronic inflammation mediate asbestos-driven mesothelial cell transformation and survival through autophagic pathways. Recent studies have elucidated some of the key mechanisms involved in asbestos-induced chronic inflammation, which are largely driven by extracellular high mobility group box 1 (HMGB1). Upon asbestos exposure, mesothelial cells release HMGB1 from the nucleus to the cytoplasm and extracellular space, where HMGB1 initiates an inflammatory response. HMGB1 translocation and release also activates autophagy and other pro-survival mechanisms, which promotes mesothelioma development. HMGB1 is currently being investigated as a biomarker to detect asbestos exposure and to detect mesothelioma development in its early stage when therapy is more effective. In parallel, several approaches inhibiting HMGB1 activities have been studied and have shown promising results. Moreover, additional cytokines, such as IL-1ß and TNF-α are being targeted to interfere with the inflammatory process that drives mesothelioma growth. Developing early detection methods and novel therapeutic strategies is crucial to prolong overall survival of patients with mesothelioma. Novel therapies targeting regulators of asbestos-induced inflammation to reduce mesothelioma growth may lead to clinical advancements to benefit patients with mesothelioma.

8.
Proc Natl Acad Sci U S A ; 117(52): 33466-33473, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318203

ABSTRACT

Rare biallelic BLM gene mutations cause Bloom syndrome. Whether BLM heterozygous germline mutations (BLM+/-) cause human cancer remains unclear. We sequenced the germline DNA of 155 mesothelioma patients (33 familial and 122 sporadic). We found 2 deleterious germline BLM+/- mutations within 2 of 33 families with multiple cases of mesothelioma, one from Turkey (c.569_570del; p.R191Kfs*4) and one from the United States (c.968A>G; p.K323R). Some of the relatives who inherited these mutations developed mesothelioma, while none with nonmutated BLM were affected. Furthermore, among 122 patients with sporadic mesothelioma treated at the US National Cancer Institute, 5 carried pathogenic germline BLM+/- mutations. Therefore, 7 of 155 apparently unrelated mesothelioma patients carried BLM+/- mutations, significantly higher (P = 6.7E-10) than the expected frequency in a general, unrelated population from the gnomAD database, and 2 of 7 carried the same missense pathogenic mutation c.968A>G (P = 0.0017 given a 0.00039 allele frequency). Experiments in primary mesothelial cells from Blm+/- mice and in primary human mesothelial cells in which we silenced BLM revealed that reduced BLM levels promote genomic instability while protecting from cell death and promoted TNF-α release. Blm+/- mice injected intraperitoneally with asbestos had higher levels of proinflammatory M1 macrophages and of TNF-α, IL-1ß, IL-3, IL-10, and IL-12 in the peritoneal lavage, findings linked to asbestos carcinogenesis. Blm+/- mice exposed to asbestos had a significantly shorter survival and higher incidence of mesothelioma compared to controls. We propose that germline BLM+/- mutations increase the susceptibility to asbestos carcinogenesis, enhancing the risk of developing mesothelioma.


Subject(s)
Asbestosis/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Mesothelioma/genetics , RecQ Helicases/genetics , Adult , Aged , Animals , Asbestos, Crocidolite , Family , Female , Genomic Instability , Heterozygote , Humans , Incidence , Inflammation/pathology , Male , Mice , Middle Aged
9.
Proc Natl Acad Sci U S A ; 117(41): 25543-25552, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32999071

ABSTRACT

Asbestos causes malignant transformation of primary human mesothelial cells (HM), leading to mesothelioma. The mechanisms of asbestos carcinogenesis remain enigmatic, as exposure to asbestos induces HM death. However, some asbestos-exposed HM escape cell death, accumulate DNA damage, and may become transformed. We previously demonstrated that, upon asbestos exposure, HM and reactive macrophages releases the high mobility group box 1 (HMGB1) protein that becomes detectable in the tissues near asbestos deposits where HMGB1 triggers chronic inflammation. HMGB1 is also detectable in the sera of asbestos-exposed individuals and mice. Searching for additional biomarkers, we found higher levels of the autophagy marker ATG5 in sera from asbestos-exposed individuals compared to unexposed controls. As we investigated the mechanisms underlying this finding, we discovered that the release of HMGB1 upon asbestos exposure promoted autophagy, allowing a higher fraction of HM to survive asbestos exposure. HMGB1 silencing inhibited autophagy and increased asbestos-induced HM death, thereby decreasing asbestos-induced HM transformation. We demonstrate that autophagy was induced by the cytoplasmic and extracellular fractions of HMGB1 via the engagement of the RAGE receptor and Beclin 1 pathway, while nuclear HMGB1 did not participate in this process. We validated our findings in a novel unique mesothelial conditional HMGB1-knockout (HMGB1-cKO) mouse model. Compared to HMGB1 wild-type mice, mesothelial cells from HMGB1-cKO mice showed significantly reduced autophagy and increased cell death. Autophagy inhibitors chloroquine and desmethylclomipramine increased cell death and reduced asbestos-driven foci formation. In summary, HMGB1 released upon asbestos exposure induces autophagy, promoting HM survival and malignant transformation.


Subject(s)
Asbestos/adverse effects , Autophagy/drug effects , Cell Transformation, Neoplastic/chemically induced , HMGB1 Protein/metabolism , Mesothelioma/metabolism , Adult , Aged , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Male , Mice , Mice, Knockout , Middle Aged , Occupational Exposure
10.
Cancer Discov ; 10(8): 1103-1120, 2020 08.
Article in English | MEDLINE | ID: mdl-32690542

ABSTRACT

Among more than 200 BAP1-mutant families affected by the "BAP1 cancer syndrome," nearly all individuals inheriting a BAP1 mutant allele developed one or more malignancies during their lifetime, mostly uveal and cutaneous melanoma, mesothelioma, and clear-cell renal cell carcinoma. These cancer types are also those that, when they occur sporadically, are more likely to carry somatic biallelic BAP1 mutations. Mechanistic studies revealed that the tumor suppressor function of BAP1 is linked to its dual activity in the nucleus, where it is implicated in a variety of processes including DNA repair and transcription, and in the cytoplasm, where it regulates cell death and mitochondrial metabolism. BAP1 activity in tumor suppression is cell type- and context-dependent. BAP1 has emerged as a critical tumor suppressor across multiple cancer types, predisposing to tumor development when mutated in the germline as well as somatically. Moreover, BAP1 has emerged as a key regulator of gene-environment interaction.This article is highlighted in the In This Issue feature, p. 1079.


Subject(s)
Kidney Neoplasms , Melanoma , Skin Neoplasms , Uveal Neoplasms , Humans , Mutation , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
11.
Nat Rev Cancer ; 20(9): 533-549, 2020 09.
Article in English | MEDLINE | ID: mdl-32472073

ABSTRACT

Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.


Subject(s)
Gene-Environment Interaction , Genetic Predisposition to Disease , Neoplasms/genetics , Animals , Germ-Line Mutation , Humans
12.
Transl Lung Cancer Res ; 9(Suppl 1): S39-S46, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32206569

ABSTRACT

Mesothelioma has long been associated with the exposure to asbestos, which was largely used in manufacturing activities. Toxicology studies in vitro and in vivo demonstrated that asbestos fibers were carcinogenic, and epidemiology studies revealed that asbestos exposure was paralleled by the increase in the incidence of mesothelioma and related mortality rates. More recently, the role of chronic inflammation and the molecular mechanisms involved in carcinogenesis by mineral fibers were elucidated following the discovery of the roles of HMGB1 and inflammasome. A change of paradigm was the discovery of a prevalence of mesotheliomas attributable to inherited mutations of cancer susceptibility genes. The discovery of BAP1 as a predisposition gene for the development of familial mesothelioma and other cancers implemented genome studies in patients with mesothelioma and routine clinical surveys in individuals at risk to identify germline mutations associated with cancers included in the BAP1 syndrome. A further progress in the approach to asbestos-related malignancy was the adoption of combined genetics and environmental analyses according to the model of gene-environment (GxE) interactions. This review aims at updating on the most recently discovered mechanisms of tumorigenesis and the pivotal role of GxE interactions.

13.
Transl Lung Cancer Res ; 9(Suppl 1): S67-S76, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32206572

ABSTRACT

Malignant mesothelioma is associated with the exposure to asbestos fibers. Recent discovery of the BAP1 cancer syndrome, a Mendelian disorder with high-penetrance autosomal dominant inheritance fostered the genotyping for nucleotide-level or larger structural alteration of germline DNA. Inherited heterozygous mutations of the BAP1 gene increase the susceptibility to carcinogenic fibers, leading to a concept of gene x environment interaction (GxE) as a pathogenetic mechanism of mesothelioma. Several studies on cohorts of unselected patients with mesothelioma or on familial/early-onset cohorts of mesothelioma cases converged on BAP1 as the more frequent germline mutated gene, followed by other genes involved in DNA repair and homologous recombination. Evidence has been emerging that patients with mesothelioma carrying germline mutations of BAP1 and of other genes, such as those involved in DNA repair and tumor suppressor genes, have better prognosis and higher chemosensitivity when compared with patients with germline wildtype Bap1. We report here a germline genomic analysis targeted 22 genes in a cohort of 101 Japanese patients irrespective of asbestos exposure, age at diagnosis, or personal or family history of cancer. By comparing the results with the Human Genetic Variation Database (HGVD) and the Genome Aggregation Database (gnomAD) we selected rare germline variants with a Combined Annotation Dependent Depletion (CADD) >20. We show here that 31 of 101 subjects were carrying 25 rare variants in 14 genes, neither reported in the HGVD nor in the gnomAD database for 14/25 variants. Besides pathogenic variants of BAP1, rare missense variants were found in genes encoding lysine-specific histone methyltransferase SETD2 and SETDB1 and genes encoding subunits of the mSWI/SNF chromatin remodeling complex. The complete scenario of the genetic background consisting of pathogenic germline variants required for the predisposition and GxE for pathogenesis of mesothelioma appears complex, and further large-scale studies are warranted.

15.
J Clin Oncol ; : JCO2018790352, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30376426

ABSTRACT

PURPOSE: We hypothesized that four criteria could help identify malignant mesotheliomas (MMs) most likely linked to germline mutations of BAP1 or of other genes: family history of MM, BAP1-associated cancers, or multiple malignancies; or age younger than 50 years. PATIENTS AND METHODS: Over the course of 7 years, 79 patients with MM met the four criteria; 22 of the 79 (28%) reported possible asbestos exposure. They were screened for germline BAP1 mutations by Sanger sequencing and by targeted next-generation sequencing (tNGS) for germline mutations in 55 additional cancer-linked genes. Deleterious mutations detected by tNGS were validated by Sanger sequencing. RESULTS: Of the 79 patients, 43 (16 probands and 27 relatives) had deleterious germline BAP1 mutations. The median age at diagnosis was 54 years and median survival was 5 years. Among the remaining 36 patients with no BAP1 mutation, median age at diagnosis was 45 years, median survival was 9 years, and 12 had deleterious mutations of additional genes linked to cancer. When compared with patients with MMs in the SEER cohort, median age at diagnosis (72 years), median survival for all MM stages (8 months), and stage I (11 months) were significantly different from the 79 patients with MM in the current study ( P < .0001). CONCLUSION: We provide criteria that help identify a subset of patients with MM who had significantly improved survival. Most of these patients were not aware of asbestos exposure and carried either pathogenic germline mutations of BAP1 or of additional genes linked to cancer, some of which may have targeted-therapy options. These patients and their relatives are susceptible to development of additional cancers; therefore, genetic counseling and cancer screening should be considered.

16.
Transl Lung Cancer Res ; 6(3): 259-269, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28713671

ABSTRACT

Malignant mesothelioma (MM) is an aggressive and lethal cancer, mostly related to inhalation of asbestos and erionite fibers. MM is associated with poor prognosis, because of its resistance to current therapies, even if higher survival occurs in patients diagnosed and treated when at stage I of the disease. However, these do not exceed 5% of the total number of cases, due to the inadequacy of the existing biomarkers for early and accurate diagnosis. Therefore, new effective biomarkers are needed for MM detection at earlier stages and to develop tailored therapies. Here we review the most promising biomarkers in MM to date: mesothelin, soluble mesothelin-related peptides (SMRPs), megakaryocyte potentiating factor (MPF), Osteopontin (OPN), Fibulin-3, high mobility group B1 (HMGB1), microRNAs (miRNAs), multiplex protein signatures. The validation of these biomarkers will allow their use, alone or in combination, for monitoring individuals from cohorts at risk of MM and attaining early detection of MM that is instrumental in improving patient survival.

17.
Cell Death Differ ; 24(10): 1694-1704, 2017 10.
Article in English | MEDLINE | ID: mdl-28665402

ABSTRACT

Carriers of heterozygous germline BAP1 mutations (BAP1+/-) develop cancer. We studied plasma from 16 BAP1+/- individuals from 2 families carrying different germline BAP1 mutations and 30 BAP1 wild-type (BAP1WT) controls from these same families. Plasma samples were analyzed by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS), ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-TQ-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). We found a clear separation in the metabolic profile between BAP1WT and BAP1+/- individuals. We confirmed the specificity of the data in vitro using 12 cell cultures of primary fibroblasts we derived from skin punch biopsies from 12/46 of these same individuals, 6 BAP1+/- carriers and 6 controls from both families. BAP1+/- fibroblasts displayed increased aerobic glycolysis and lactate secretion, and reduced mitochondrial respiration and ATP production compared with BAP1WT. siRNA-mediated downregulation of BAP1 in primary BAP1WT fibroblasts and in primary human mesothelial cells, led to the same reduced mitochondrial respiration and increased aerobic glycolysis as we detected in primary fibroblasts from carriers of BAP1+/- mutations. The plasma and cell culture results were highly reproducible and were specifically and only linked to BAP1 status and not to gender, age or family, or cell type, and required an intact BAP1 catalytic activity. Accordingly, we were able to build a metabolomic model capable of predicting BAP1 status with 100% accuracy using data from human plasma. Our data provide the first experimental evidence supporting the hypothesis that aerobic glycolysis, also known as the 'Warburg effect', does not necessarily occur as an adaptive process that is consequence of carcinogenesis, but rather that it may also predate malignancy by many years and facilitate carcinogenesis.


Subject(s)
Mitochondria/genetics , Mutation/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Germ Cells/metabolism , Heterozygote , Humans , Mitochondria/metabolism , Skin/pathology
18.
Nature ; 546(7659): 549-553, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28614305

ABSTRACT

BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/- cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction in human carcinogenesis.


Subject(s)
Calcium/metabolism , Cell Transformation, Neoplastic , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Apoptosis/genetics , Asbestos/toxicity , Calcium Signaling , Cell Nucleus/metabolism , Cell Survival , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/radiation effects , Cells, Cultured , DNA Damage , Epithelium , Fibroblasts , Gene-Environment Interaction , Humans , Protein Binding , Protein Stability , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/genetics
19.
J Transl Med ; 15(1): 58, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28298211

ABSTRACT

BACKGROUND: Malignant mesothelioma (MM) is a very aggressive type of cancer, with a dismal prognosis and inherent resistance to chemotherapeutics. Development and evaluation of new therapeutic approaches is highly needed. Immunosuppressant FTY720, approved for multiple sclerosis treatment, has recently raised attention for its anti-tumor activity in a variety of cancers. However, its therapeutic potential in MM has not been evaluated yet. METHODS: Cell viability and anchorage-independent growth were evaluated in a panel of MM cell lines and human mesothelial cells (HM) upon FTY720 treatment to assess in vitro anti-tumor efficacy. The mechanism of action of FTY720 in MM was assessed by measuring the activity of phosphatase protein 2A (PP2A)-a major target of FTY720. The binding of the endogenous inhibitor SET to PP2A in presence of FTY720 was evaluated by immunoblotting and immunoprecipitation. Signaling and activation of programmed cell death were evaluated by immunoblotting and flow cytometry. A syngeneic mouse model was used to evaluate anti-tumor efficacy and toxicity profile of FTY720 in vivo. RESULTS: We show that FTY720 significantly suppressed MM cell viability and anchorage-independent growth without affecting normal HM cells. FTY720 inhibited the phosphatase activity of PP2A by displacement of SET protein, which appeared overexpressed in MM, as compared to HM cells. FTY720 promoted AKT dephosphorylation and Bcl-2 degradation, leading to induction of programmed cell death, as demonstrated by caspase-3 and PARP activation, as well as by cytochrome c and AIF intracellular translocation. Moreover, FTY720 administration in vivo effectively reduced tumor burden in mice without apparent toxicity. CONCLUSIONS: Our preclinical data indicate that FTY720 is a potentially promising therapeutic agent for MM treatment.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mesothelioma/drug therapy , Mesothelioma/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/toxicity , Mesothelioma, Malignant , Mice , Protein Phosphatase 2/metabolism , Tumor Suppressor Proteins/metabolism
20.
Oncotarget ; 8(14): 22649-22661, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28186988

ABSTRACT

Human malignant mesothelioma (MM) is an aggressive cancer linked to asbestos and erionite exposure. We previously reported that High-Mobility Group Box-1 protein (HMGB1), a prototypic damage-associated molecular pattern, drives MM development and sustains MM progression. Moreover, we demonstrated that targeting HMGB1 inhibited MM cell growth and motility in vitro, reduced tumor growth in vivo, and prolonged survival of MM-bearing mice. Ethyl pyruvate (EP), the ethyl ester of pyruvic acid, has been shown to be an effective HMGB1 inhibitor in inflammation-related diseases and several cancers. Here, we studied the effect of EP on the malignant phenotype of MM cells in tissue culture and on tumor growth in vivo using an orthotopic MM xenograft model. We found that EP impairs HMGB1 secretion by MM cells leading to reduced RAGE expression and NF-κB activation. As a consequence, EP impaired cell motility, cell proliferation, and anchorage-independent growth of MM cells. Moreover, EP reduced HMGB1 serum levels in mice and inhibited the growth of MM xenografts.Our results indicate that EP effectively hampers the malignant phenotype of MM, offering a novel potential therapeutic approach to patients afflicted with this dismal disease.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HMGB1 Protein/antagonists & inhibitors , Mesothelioma/prevention & control , Pyruvates/pharmacology , Animals , Apoptosis , Cell Movement , Cell Proliferation , Female , HMGB1 Protein/metabolism , Humans , Mesothelioma/metabolism , Mesothelioma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Staging , Prognosis , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...