Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Alzheimers Dement ; 20(4): 2752-2765, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38415908

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) trial participants are often screened for eligibility by brain amyloid positron emission tomography/cerebrospinal fluid (PET/CSF), which is inefficient as many are not amyloid positive. Use of blood-based biomarkers may reduce screen failures. METHODS: We recruited 755 non-Hispanic White, 115 Hispanic, 112 non-Hispanic Black, and 19 other minority participants across groups of cognitively normal (n = 417), mild cognitive impairment (n = 312), or mild AD (n = 272) participants. Plasma amyloid beta (Aß)40, Aß42, Aß42/Aß40, total tau, phosphorylated tau (p-tau)181, and p-tau217 were measured; amyloid PET/CSF (n = 956) determined amyloid positivity. Clinical, blood biomarker, and ethnicity/race differences associated with amyloid status were evaluated. RESULTS: Greater impairment, older age, and carrying an apolipoprotein E (apoE) ε4 allele were associated with greater amyloid burden. Areas under the receiver operating characteristic curve for amyloid status of plasma Aß42/Aß40, p-tau181, and p-tau217 with amyloid positivity were ≥ 0.7117 for all ethnoracial groups (p-tau217, ≥0.8128). Age and apoE ε4 adjustments and imputation of biomarker values outside limit of quantitation provided small improvement in predictive power. DISCUSSION: Blood-based biomarkers are highly associated with amyloid PET/CSF results in diverse populations enrolled at clinical trial sites. HIGHLIGHTS: Amyloid beta (Aß)42/Aß40, phosphorylated tau (p-tau)181, and p-tau 217 blood-based biomarkers predicted brain amyloid positivity. P-tau 217 was the strongest predictor of brain amyloid positivity. Biomarkers from diverse ethnic, racial, and clinical cohorts predicted brain amyloid positivity. Community-based populations have similar Alzheimer's disease (AD) biomarker levels as other populations. A prescreen process with blood-based assays may reduce the number of AD trial screen failures.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid , Brain , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid
3.
JAMA Neurol ; 76(1): 35-40, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30383097

ABSTRACT

Importance: Young mouse plasma restores memory in aged mice, but, to our knowledge, the effects are unknown in patients with Alzheimer disease (AD). Objective: To assess the safety, tolerability, and feasibility of infusions of young fresh frozen plasma (yFFP) from donors age 18 to 30 years in patients with AD. Design, Setting, and Participants: The Plasma for Alzheimer Symptom Amelioration (PLASMA) study randomized 9 patients under a double-blind crossover protocol to receive 4 once-weekly infusions of either 1 unit (approximately 250 mL) of yFFP from male donors or 250 mL of saline, followed by a 6-week washout and crossover to 4 once-weekly infusions of an alternate treatment. Patients and informants were masked to treatment and subjective measurements. After an open-label amendment, 9 patients received 4 weekly yFFP infusions only and their subjective measurements were unmasked. Patients were enrolled solely at Stanford University, a tertiary academic medical center, from September 2014 to December 2016, when enrollment reached its target. Eighteen consecutive patients with probable mild to moderate AD dementia, a Mini-Mental State Examination (score of 12 to 24 inclusive), and an age of 50 to 90 years were enrolled. Thirty-one patients were screened and 13 were excluded: 11 failed the inclusion criteria and 2 declined to participate. Interventions: One unit of yFFP from male donors/placebo infused once weekly for 4 weeks. Main Outcome and Measures: The primary outcomes were the safety, tolerability, and feasibility of 4 weekly yFFP infusions. Safety end point analyses included all patients who received the study drug/placebo. Results: There was no difference in the age (mean [SD], 74.17 [7.96] years), sex (12 women [67%]), or baseline Mini-Mental State Examination score (mean [SD], 19.39 [3.24]) between the crossover (n = 9) and open-label groups (n = 9). There were no related serious adverse events. One patient discontinued participation because of urticaria and another because of an unrelated stroke. There was no statistically significant difference between the plasma (17 [94.4%]) and placebo (9 [100.0%]) cohorts for other adverse events, which were mild to moderate in severity. The most common adverse events in the plasma group included hypertension (3 [16.7%]), dizziness (2 [11.1%]), sinus bradycardia (3 [16.7%]), headache (3 [16.7%]), and sinus tachycardia (3 [16.7%]). The mean visit adherence (n = 18) was 86% (interquartile range, 87%-100%) and adherence, accounting for a reduction in the total visit requirement due to early patient discontinuation, was 96% (interquartile range, 89%-100%). Conclusions and Relevance: The yFFP treatment was safe, well tolerated, and feasible. The study's limitations were the small sample size, short duration, and change in study design. The results warrant further exploration in larger, double-blinded placebo-controlled clinical trials. Trial Registration: ClinicalTrials.gov Identifier: NCT02256306.


Subject(s)
Alzheimer Disease/therapy , Blood Component Transfusion/methods , Plasma , Adolescent , Adult , Aged , Aged, 80 and over , Blood Component Transfusion/adverse effects , Cross-Over Studies , Double-Blind Method , Feasibility Studies , Female , Humans , Male , Treatment Outcome , Young Adult
6.
Angew Chem Int Ed Engl ; 40(21): 4080-4082, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-29712242

ABSTRACT

Negative differential resistance (NDR), mediated by vibrational excitation, is strongly dependent on molecular structure and dynamics, according to scanning tunneling microscopy on Cu(001)-bound pyrrolidine and N-methylpyrrolidine at 9 K. Tunneling electrons cause the former to switch between conformations I and II, so that NDR is observed. The methyl group of of the latter compound restricts it to a single conformation, and a linear current-voltage characteristic results.

SELECTION OF CITATIONS
SEARCH DETAIL
...