Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biol Lett ; 20(3): 20230457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531416

ABSTRACT

Plastic pollution and ongoing climatic changes exert considerable pressure on coastal ecosystems. Unravelling the combined effects of these two threats is essential to management and conservation actions to reduce the overall environmental risks. We assessed the capacity of a coastal ecosystem engineer, the blue mussel Mytilus edulis, to cope with various levels of aerial heat stress (20, 25, 30 and 35°C) after an exposure to substances leached from beached and virgin low-density polyethylene pellets. Our results revealed a significant interaction between temperature and plastic leachates on mussel survival rates. Specifically, microplastic leachates had no effect on mussel survival at 20, 25 and 30°C. In turn, mussel survival rates significantly decreased at 35°C, and this decrease was even more significant following an exposure to leachates from beached pellets; these pellets had a higher concentration of additives compared to the virgin ones, potentially causing a bioenergetic imbalance. Our results stress the importance of adopting integrated approaches combining the effects of multiple environmental threats on key marine species to understand and mitigate their potential synergistic effects on ecosystem dynamics and resilience in the face of the changing environment.


Subject(s)
Extreme Heat , Mytilus edulis , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Ecosystem , Heat-Shock Response
2.
Sci Total Environ ; 888: 164037, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37207783

ABSTRACT

Both individual and collective anti-predator behaviours are essential for the survival of many species. This is particularly true for ecosystem engineers such as intertidal mussels, which through their collective behaviour create novel habitats for a range of organisms and biodiversity hotspots. However, contaminants may disrupt these behaviours and consequently indirectly affect exposure to predation risk at the population level. Among these, plastic litter is a major and ubiquitous contaminant of the marine environment. Here, we assessed the impact of microplastic (MP) leachates of the most produced plastic polymer, polypropylene (PlasticsEurope, 2022), at a high but locally relevant concentration (i.e. ca. 12 g L-1) on the collective behaviours and anti-predator responses of both small and large Mytilus edulis mussels. Indeed, in contrast to large mussels, small ones reacted to MP leachates, showing a taxis towards conspecifics and stronger aggregations. All mussels reacted to the chemical cues of the predatory crab, Hemigrapsus sanguineus, but with two different collective anti-predator behaviours. Small mussels only showed a taxis towards conspecifics when exposed to predator cues. This response was also found in large ones with a tendency to form more strongly bound aggregations and a considerable reduced activity, i.e. they significantly delayed their time to start to form aggregations and decreased their gross distance. These anti-predator behaviours were respectively inhibited and impaired in small and large mussels by MP leachates. The observed collective behavioural changes may reduce individual fitness by enhancing predation risk, particularly in small mussels that are the crab H. sanguineus's favourite preys. Given the key role of mussels as ecosystem engineers, our observations suggest that plastic pollution may have implication on M. edulis at the species level, but also enhancing a cascading effect towards a higher level of organisation such as population, community and ultimately structure and function of intertidal ecosystem.


Subject(s)
Brachyura , Mytilus edulis , Animals , Ecosystem , Plastics , Mass Behavior , Cues , Mytilus edulis/physiology , Brachyura/physiology
3.
Chemosphere ; 306: 135425, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35809744

ABSTRACT

The massive contamination of the environment by plastics is an increasing global scientific and societal concern. Knowing whether and how these pollutants affect the behaviour of keystone species is essential to identify environmental risks effectively. Here, we focus on the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify the environment and provide numerous ecosystem functions and services. Specifically, we assess the effect of virgin polypropylene beads on mussels' chemotactic (i.e. a directional movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change in movement properties such as speed, distance travelled or turning frequency in response to a chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual mussels reduced both their gross distance and speed, changes interpreted here as an avoidance behaviour. When exposed to polypropylene leachates, mussels moved less compared to control conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic leachates, mussels significantly changed the direction of movement suggesting a leachate-induced loss of their negative chemotaxis response. Taken together, our results indicate that the behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as its mobility are impaired when exposed to microplastic leachates, potentially affecting the functioning of the ecosystem that the species supports.


Subject(s)
Brachyura , Mytilus edulis , Mytilus , Water Pollutants, Chemical , Animals , Ecosystem , Microplastics , Mytilus edulis/physiology , Plastics/chemistry , Polypropylenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Conserv Physiol ; 10(1): coac033, 2022.
Article in English | MEDLINE | ID: mdl-35693035

ABSTRACT

Arenicola marina, a marine benthic polychaete, is widespread on sandy beaches in Europe and considered as an ecosystem engineer despite commonly used as bait by fishermen. Data regarding the bioenergetics of the lugworm larval stages are still incomplete. Trochophore is initially lecithotroph and then becomes planktotroph while growing as metatrochophore on subtidal area, a quite stable daily temperature environment compared with the foreshore, where juveniles and adult live, with daily temperature fluctuating up to 15°C. These discrepancies in temperature ranges may influence the temperature corrections (TCs) that control metabolic rates during the life cycle of A. marina. We carried out laboratory experiments in microcosms by inducing artificial spawning of lugworms, and then undertaken in vitro fertilization to obtain embryos and, finally, to follow, the larval development up to 10 segments with chaetae for 50 days under three temperature conditions (13°C, 15°C and 17°C) and two food conditions ('fed' and 'non-fed'). The first feeding ('birth') of A. marina larvae was deciphered anatomically for a size between 450 and 500 µm and described at 17 days post-fertilization for larvae reared at 15°C and 17°C. Using a biphasic model with a von Bertalanffy growth before 'birth' and an exponential growth after 'birth', among the three temperature treatments, the 15°C condition exhibited the best larval performance. TC based on embryonic and larval metabolic rates gave an Arrhenius temperature of ~6661 K and a higher boundary temperature tolerance range of ~294.5 K. Both temperature values differ from those calculated from TC based mostly on juvenile and adult metabolic rates. We claim to use two sets of Arrhenius temperatures according to the life history stages of A. marina while using Dynamic Energy Budget model. This model was developed initially in order to manage the conservation of the lugworm species.

6.
PLoS One ; 10(12): e0144307, 2015.
Article in English | MEDLINE | ID: mdl-26710314

ABSTRACT

The Mediterranean Sea and adjoining East Atlantic Ocean host a diverse array of small-sized mussels that predominantly live on sunken, decomposing organic remains. At least two of these, Idas modiolaeformis and Idas simpsoni, are known to engage in gill-associated symbioses; however, the composition, diversity and variability of these symbioses with changing habitat and location is poorly defined. The current study presents bacterial symbiont assemblage data, derived from 454 pyrosequencing carried out on replicate specimens of these two host species, collected across seven sample sites found in three oceanographic regions in the Mediterranean and East Atlantic. The presence of several bacterial OTUs in both the Mediterranean Sea and eastern Atlantic suggests that similar symbiont candidates occur on both sides of the Strait of Gibraltar. The results reveal markedly different symbiotic modes in the two species. Idas modiolaeformis displays high symbiont diversity and flexibility, with strong variation in symbiont composition from the East Mediterranean to the East Atlantic. Idas simpsoni displays low symbiont diversity but high symbiont fidelity, with a single dominant OTU occurring in all specimens analysed. These differences are argued to be a function of the host species, where subtle differences in host evolution, life-history and behaviour could partially explain the observed patterns. The variability in symbiont compositions, particularly in Idas modiolaeformis, is thought to be a function of the nature, context and location of the habitat from which symbiont candidates are sourced.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Mytilidae/microbiology , Symbiosis/physiology , Animals , Base Sequence , Biodiversity , Gibraltar , Mediterranean Sea , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Mar Environ Res ; 112(Pt B): 100-12, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26275834

ABSTRACT

Symbioses between microbiota and marine metazoa occur globally at chemosynthetic habitats facing imminent threat from anthropogenic disturbance, yet little is known concerning the role of symbiosis during early development in chemosymbiotic metazoans: a critical period in any benthic species' lifecycle. The emerging symbiosis of Idas (sensu lato) simpsoni mussels undergoing development is assessed over a post-larval-to-adult size spectrum using histology and fluorescence in situ hybridisation (FISH). Post-larval development shows similarities to that of both heterotrophic and chemosymbiotic mussels. Data from newly settled specimens confirm aposymbiotic, planktotrophic larval development. Sulphur-oxidising (SOX) symbionts subsequently colonise multiple exposed, non-ciliated epithelia shortly after metamorphosis, but only become abundant on gills as these expand with greater host size. This wide-spread bathymodiolin recorded from sulphidic wood, bone and cold-seep habitats, displays a suite of adaptive traits that could buffer against anthropogenic disturbance.


Subject(s)
Adaptation, Physiological , Bacterial Physiological Phenomena , Ecosystem , Mytilidae/microbiology , Mytilidae/physiology , Symbiosis , Animals , Atlantic Ocean , In Situ Hybridization, Fluorescence , Mytilidae/anatomy & histology , Mytilidae/growth & development , Portugal
8.
Front Microbiol ; 6: 162, 2015.
Article in English | MEDLINE | ID: mdl-25774156

ABSTRACT

Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps.

9.
Naturwissenschaften ; 101(5): 373-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24622961

ABSTRACT

Bacterial symbiont transmission is a key step in the renewal of the symbiotic interaction at each host generation, and different modes of transmission can be distinguished. Vesicomyidae are chemosynthetic bivalves from reducing habitats that rely on symbiosis with sulfur-oxidizing bacteria, in which two studies suggesting vertical transmission of symbionts have been published, both limited by the imaging techniques used. Using fluorescence in situ hybridization and transmission electron microscopy, we demonstrate that bacterial symbionts of Isorropodon bigoti, a gonochoristic Vesicomyidae from the Guiness cold seep site, occur intracellularly within female gametes at all stages of gametogenesis from germ cells to mature oocytes and in early postlarval stage. Symbionts are completely absent from the male gonad and gametes. This study confirms the transovarial transmission of symbionts in Vesicomyidae and extends it to the smaller species for which no data were previously available.


Subject(s)
Bacterial Physiological Phenomena , Bivalvia/microbiology , Symbiosis , Animals , Bivalvia/ultrastructure , Female , Germ Cells/microbiology , Germ Cells/ultrastructure , Gonads/microbiology , Gonads/ultrastructure , In Situ Hybridization, Fluorescence , Male , Microscopy, Electron, Transmission , Oceans and Seas
10.
FEMS Microbiol Ecol ; 83(3): 552-67, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22988940

ABSTRACT

Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.


Subject(s)
Bacteria/classification , Ecosystem , Polyplacophora/microbiology , Wood/microbiology , Animals , Carbon Isotopes/analysis , DNA, Bacterial/isolation & purification , Food Chain , Gastrointestinal Tract/microbiology , Gills/microbiology , Nitrogen Isotopes/analysis , Phylogeny , Polyplacophora/classification , Polyplacophora/physiology , RNA, Ribosomal, 16S/isolation & purification , Sequence Analysis, DNA , Species Specificity , Vanuatu
11.
Microbiologyopen ; 1(4): 467-80, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23233246

ABSTRACT

Fauna from deep-sea cold seeps worldwide is dominated by chemosymbiotic metazoans. Recently, investigation of new sites in the Gulf of Guinea yielded numerous new species for which symbiosis was strongly suspected. In this study, symbioses are characterized in five seep-specialist metazoans recently collected from the Guiness site located at ≈ 600 m depth. Four bivalve and one annelid species belonging to families previously documented to harbor chemosynthetic bacteria were investigated using bacterial marker gene sequencing, fluorescence in situ hybridization, and stable isotope analyses. Results support that all five species display chemosynthetic, sulfur-oxidizing γ-proteobacteria. Bacteria are abundant in the gills of bivalves, and in the trophosome of the siboglinid annelid. As observed for their relatives occurring at deeper sites, chemoautotrophy is a major source of carbon for animal nutrition. Although symbionts found in each host species are related to symbionts found in other metazoans from the same families, several incongruencies are observed among phylogenetic trees obtained from the different bacterial genes, suggesting a certain level of heterogeneity in symbiont strains present. Results provide new insights into the diversity, biogeography, and role of symbiotic bacteria in metazoans from the Gulf of Guinea, at a site located at an intermediate depth between the continental shelf and the deep sea.


Subject(s)
Bivalvia/microbiology , Gammaproteobacteria/physiology , Amino Acid Sequence , Animals , Atlantic Ocean , Base Sequence , Bivalvia/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gammaproteobacteria/genetics , Genetic Variation , Gills/microbiology , Guinea , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 28S/chemistry , RNA, Ribosomal, 28S/genetics , Sequence Alignment , Sequence Analysis, DNA , Symbiosis
12.
FEMS Microbiol Ecol ; 74(2): 450-63, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20831591

ABSTRACT

Even though their occurrence was reported a long time ago, sunken wood ecosystems at the deep-sea floor have only recently received specific attention. Accumulations of wood fragments in the deep sea create niches for a diverse fauna, but the significance of the wood itself as a food source remains to be evaluated. Pectinodonta sp. is a patellogastropod that exclusively occurs on woody substrates, where individuals excavate deep depressions, and is thus a potential candidate for a wood-eating lifestyle. Several approaches were used on Pectinodonta sampled close to Tongoa island (Vanuatu) to investigate its dietary habits. Host carbon is most likely derived from the wood material based on stable isotopes analyses, and high cellulase activity was measured in the digestive mass. Electron microscopy and FISH revealed the occurrence of two distinct and dense bacterial communities, in the digestive gland and on the gill. Gland-associated 16S rRNA gene bacterial phylotypes, confirmed by in situ hybridization, included members of three divisions (Alpha- and Gammaproteobacteria, Bacteroidetes), and were moderately related (90-96% sequence identity) to polymer-degrading and denitrifying bacteria. Gill-associated phylotypes included representatives of the Delta- and Epsilonproteobacteria. The possible involvement of these two bacterial communities in wood utilization by Pectinodonta sp. is discussed.


Subject(s)
Bacteria/genetics , Ecosystem , Gastropoda/microbiology , Wood/microbiology , Animals , Bacteria/classification , Carbon Isotopes/analysis , DNA, Bacterial/genetics , Gastropoda/anatomy & histology , Gastropoda/ultrastructure , Nitrogen Isotopes/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...