Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
FASEB J ; 34(9): 12072-12082, 2020 09.
Article in English | MEDLINE | ID: mdl-32776612

ABSTRACT

Mammals adapt to seasons using a neuroendocrine calendar defined by the photoperiodic change in the nighttime melatonin production. Under short photoperiod, melatonin inhibits the pars tuberalis production of TSHß, which, in turn, acts on tanycytes to regulate the deiodinase 2/3 balance resulting in a finely tuned seasonal control of the intra-hypothalamic thyroid hormone T3. Despite the pivotal role of this T3 signaling for synchronizing reproduction with the seasons, T3 cellular targets remain unknown. One candidate is a population of hypothalamic neurons expressing Rfrp, the gene encoding the RFRP-3 peptide, thought to be integral for modulating rodent's seasonal reproduction. Here we show that nighttime melatonin supplementation in the drinking water of melatonin-deficient C57BL/6J mice mimics photoperiodic variations in the expression of the genes Tshb, Dio2, Dio3, and Rfrp, as observed in melatonin-proficient mammals. Notably, we report that this melatonin regulation of Rfrp expression is no longer observed in mice carrying a global mutation of the T3 receptor, TRα, but is conserved in mice with a selective neuronal mutation of TRα. In line with this observation, we find that TRα is widely expressed in the tanycytes. Altogether, our data demonstrate that the melatonin-driven T3 signal regulates RFRP-3 neurons through non-neuronal, possibly tanycytic, TRα.


Subject(s)
Gene Expression Regulation/drug effects , Melatonin/pharmacology , Neuropeptides/biosynthesis , Receptors, Thyroid Hormone/metabolism , Triiodothyronine/metabolism , Animals , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Mice , Mice, Knockout , Neuropeptides/genetics , Receptors, Thyroid Hormone/genetics , Triiodothyronine/genetics , Iodothyronine Deiodinase Type II
2.
Endocrinology ; 158(3): 652-663, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27983867

ABSTRACT

In females, reproductive activity relies on proper integration of daily and environmental changes as well as cyclic sex-steroid feedback. This study sought to investigate the role of the hypothalamic Arg-Phe amide-related peptide (RFRP)-3 in the daily and seasonal control of reproductive activity in female Syrian hamsters by analyzing the RFRP system and investigating the effects of central administration of RFRP-3 at different reproductive stages. In long day-adapted sexually active female hamsters, the number of c-Fos-activated RFRP immunoreactive neurons was reduced in the afternoon of diestrus and proestrus; the latter was correlated with increased kisspeptin activity and the luteinizing hormone (LH) surge. Moreover, acute RFRP-3 administration decreased LH secretion when given midafternoon, before the LH surge, and had no effect at other time points of proestrus or diestrus. These data indicate that RFRP-3 exerts a tonic inhibition on LH secretion, which is lifted at the time of the preovulatory surge on the afternoon of proestrus. In short day-adapted sexually inactive female hamsters, Rfrp expression is strongly inhibited in a sex steroid-independent manner, and prolonged central infusion of RFRP-3 completely reactivated the reproductive axis through increased kisspeptin expression, gonadotropin and estradiol secretion, and gonadal weight. These findings reveal a critical role of RFRP-3 in the control of reproductive activity in female rodents and suggest that RFRP neurons, acting alongside kisspeptin neurons, are essential for proper synchronization of reproductive activity with the time of the day, the stage of the estrous cycle, and the seasonal changes in photoperiod.


Subject(s)
Estrous Cycle , Mesocricetus/physiology , Neuropeptides/physiology , Reproduction , Seasons , Animals , Circadian Rhythm , Cricetinae , Female , Injections, Intraventricular , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Neurons/metabolism , Photoperiod
3.
Article in English | MEDLINE | ID: mdl-27199893

ABSTRACT

Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24-h light/dark ratio (i.e., photoperiod), which is translated into the nocturnal production of the pineal hormone melatonin. The annual rhythm in this melatonin signal acts as a synchronizer ensuring that breeding occurs when environmental conditions favor survival of the offspring. Although specific mechanisms might vary among seasonal species, the hypothalamic RF (Arg-Phe) amide-related peptides (RFRP-1 and -3) are believed to play a critical role in the central control of seasonal reproduction and in all seasonal species investigated, the RFRP system is persistently inhibited in short photoperiod. Central chronic administration of RFRP-3 in short day-adapted male Syrian hamsters fully reactivates the reproductive axis despite photoinhibitory conditions, which highlights the importance of the seasonal changes in RFRP expression for proper regulation of the reproductive axis. The acute effects of RFRP peptides, however, depend on species and photoperiod, and recent studies point toward a different role of RFRP in regulating female reproductive activity. In this review, we summarize the recent advances made to understand the role and underlying mechanisms of RFRP in the seasonal control of reproduction, primarily focusing on mammalian species.

4.
J Comp Neurol ; 524(9): 1825-38, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26518222

ABSTRACT

RF-(Arg-Phe) related peptides (RFRP-1 and -3) are considered to play a role in the seasonal regulation of reproduction; however, the effect of the peptides depends on species and gender. This study aimed at comparing the RFRP system in male and female Syrian hamsters over long and short photoperiods to investigate the neuroanatomical basis of these differential effects. The neuroanatomical distribution of RFRP neurons and fibers, revealed using an antiserum recognizing RFRP-1 and -3, as well as GPR147 mRNA, are similar in male and female Syrian hamsters. RFRP neurons are mainly found in the medial hypothalamus, whereas RFRP projections and GPR147 mRNA are observed in the preoptic area, anteroventral-periventricular nucleus, suprachiasmatic nucleus, paraventricular nucleus, bed nucleus of the stria terminalis, ventromedial hypothalamus, habenular nucleus, and arcuate nucleus. The number of RFRP neurons is higher in females than in males, and in both sexes, the number of RFRP neurons is reduced in short photoperiods. GPR147 mRNA levels are higher in females than in males and are downregulated in short photoperiods, particularly in females. Interestingly, the number of RFRP-positive fibers in the anteroventral-periventricular nucleus is higher only in females adjusted to a short photoperiod. Our results suggest that the RFRP system, which is strongly regulated by photoperiod in both male and female Syrian hamsters, is particularly important in females, with a distinct role in the anteroventral-periventricular nucleus, possibly in the regulation of the preovulatory luteinizing hormone surge via kisspeptin neurons.


Subject(s)
Circadian Rhythm/physiology , Gene Expression Regulation/physiology , Hypothalamus/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Sex Characteristics , Analysis of Variance , Animals , Avian Proteins/metabolism , Cricetinae , Female , Hypothalamic Hormones/metabolism , Male , Neurons/metabolism , Neuropeptides/genetics , RNA, Messenger/metabolism , Receptors, Neuropeptide/genetics
5.
Front Neurosci ; 7: 22, 2013.
Article in English | MEDLINE | ID: mdl-23550229

ABSTRACT

Seasonal mammals use the photoperiodic variation in the nocturnal production of the pineal hormone melatonin to synchronize their reproductive activity with seasons. In rodents, the (SD) short day profile of melatonin secretion has long been proven to inhibit reproductive activity. Lately, we demonstrated that melatonin regulates the expression of the hypothalamic peptides kisspeptins (Kp) and RFamide-related peptide-3 (RFRP-3), recently discovered as potent regulators of gonadotropin-releasing hormone (GnRH) neuron activity. In the male Syrian hamster, Kp expression in the arcuate nucleus is down-regulated by melatonin independently of the inhibitory feedback of testosterone. A central or peripheral administration of Kp induces an increase in pituitary gonadotropins and gonadal hormone secretion, but most importantly a chronic infusion of the peptide reactivates the photo-inhibited reproductive axis of Syrian hamsters kept in SD conditions. RFRP-3 expression in the dorsomedial hypothalamus is also strongly inhibited by melatonin in a SD photoperiod. Although RFRP-3 is usually considered as an inhibitory component of the gonadotropic axis, a central acute administration of RFRP-3 in the male Syrian hamster induces a marked increase in gonadotropin secretion and testosterone production. Furthermore, a chronic central infusion of RFRP-3 in SD-adapted hamsters reactivates the reproductive axis, in the same manner as Kp. Both Kp and RFRP-3 neurons project onto GnRH neurons and both neuropeptides regulate GnRH neuron activity. In addition, central RFRP-3 infusion was associated with a significant increase in arcuate Kp expression. However, the actual sites of action of both peptides in the Syrian hamster brain are still unknown. Altogether our findings indicate that Kp and RFRP neurons are pivotal relays for the seasonal regulation of reproduction, and also suggest that RFRP neurons might be the primary target of the melatoninergic message.

6.
J Pineal Res ; 46(1): 95-105, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19090912

ABSTRACT

The suprachiasmatic nuclei (SCN) distribute the circadian neural message to the pineal gland which transforms it into a humoral circadian message, the nocturnal melatonin synthesis, which in turn modulates tissues expressing melatonin receptors such as the SCN or the pars tuberalis (PT). Nuclear orphan receptors (NOR), including rorbeta and rev-erbalpha, have been presented as functional links between the positive and negative loops of the molecular clock. Recent findings suggest that these NOR could be the initial targets of melatonin's chronobiotic message within the SCN. We investigated the role of these NOR in the physiological effect of endogenous melatonin on these tissues. We monitored rorbeta and rev-erbalpha mRNA expression levels by quantitative in situ hybridization after pinealectomy. Pinealectomy had no effect on NOR circadian expression rhythms in the SCN in 8-day pinealectomized (PX) animals. However in animals PX for 3 months, significant desynchronization between per1 and per2 transcription patterns appeared. These results suggest that endogenous melatonin could sustain the circadian rhythmicity and the phase relationship between the molecular partners of the SCN circadian system on a long-term basis. On the other hand, pinealectomy decreased the level and abolished the rhythmicity of NOR mRNA expression in the PT. These effects were partially prevented by daily melatonin administration in the drinking water. These results show that NOR can be regulated by the melatonin circadian rhythm in the PT and could be the link between the physiological action of melatonin and the core of the molecular circadian clock in this tissue.


Subject(s)
Circadian Rhythm/physiology , Melatonin/metabolism , Pituitary Gland, Anterior/metabolism , Suprachiasmatic Nucleus/metabolism , Analysis of Variance , Animals , In Situ Hybridization , Least-Squares Analysis , Linear Models , Male , Melatonin/administration & dosage , Melatonin/blood , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Pineal Gland/surgery , Rats , Rats, Wistar
7.
Brain Res Mol Brain Res ; 114(2): 101-6, 2003 Jun 10.
Article in English | MEDLINE | ID: mdl-12829319

ABSTRACT

In mammals, interacting transcriptional/post-translational feedback loops involving 'clock genes' and their protein products control circadian organisation. These genes are not only expressed in the master circadian clock of the suprachiasmatic nuclei (SCN) but also in many peripheral tissues where they exhibit similar but not identical dynamic to that seen in the SCN. Among these peripheral tissues, the pars tuberalis (PT) of the pituitary expresses clock genes. We show here that the PT of the rat, like that of other rodents, rhythmically expresses Per1. We also report rhythmic expression of another clock gene, Cry1. The peak of Cry1 mRNA expression occurs during the night concomitantly with rising blood plasma melatonin concentrations. Using an acute injection paradigm, we demonstrate that Cry1 expression is directly induced by melatonin in the PT. Melatonin injection at the end of the subjective day also affects Per1 expression, leading to diminished mRNA levels. These data support the existence of a time-measurement model in the PT based on direct opposite actions of melatonin on Per1 and Cry1 expression.


Subject(s)
Biological Clocks/genetics , Circadian Rhythm/physiology , Drosophila Proteins , Eye Proteins , Flavoproteins/genetics , Melatonin/blood , Photoreceptor Cells, Invertebrate , Pituitary Gland/metabolism , Rats, Wistar/metabolism , Animals , Biological Clocks/drug effects , Cell Cycle Proteins , Circadian Rhythm/drug effects , Cryptochromes , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Melatonin/pharmacology , Nuclear Proteins/genetics , Period Circadian Proteins , Pituitary Gland/cytology , Pituitary Gland/drug effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Rats, Wistar/anatomy & histology , Receptors, G-Protein-Coupled
8.
Neuro Endocrinol Lett ; 24(1-2): 33-8, 2003.
Article in English | MEDLINE | ID: mdl-12743529

ABSTRACT

OBJECTIVES: The pineal gland transduces photoperiodic informations to the neuroendocrine axis through the nocturnally melatonin secretion. This hormonal message plays a major role in the biological rhythm regulation. By autoradiography, more than 130 melatonin putative targets have been reported in the central nervous system (CNS) and in peripheral tissues. However, cross-species consensus concern only a few of them like the suprachiasmatic nuclei (SCN), the master circadian clock, and the pars tuberalis of the pituitary. Recently, MT1 melatonin receptor cDNA have been cloned in several mammals providing us with new tools to investigate its tissular location at the gene level. In the present study, we report a screening for MT1 mRNA by RT-PCR amplification of numerous tissue mRNA. METHOD: mRNA were extracted from a large variety of rat tissues. To semi-quantify the melatonin receptor mRNA expression level, each cDNA was amplified concomitantly with both beta-actin and MT1 specific primers. RESULTS: In central and peripheral tissues previously reported to bind melatonin, strong PCR signals were logically observed. More surprisingly, a vast majority of studied tissues express MT1 mRNA and then might be responsive to melatonin. CONCLUSION: Numerous biological functions express diurnal rhythmicity and internal-synchronization. As, most of them apparently do not receive any out-coming neuronal message from the SCN, endocrine communication was proposed to support biological rhythm synchronization. Our present data strengthen the idea that the nocturnally restricted melatonin secretion could be one internal zeitgeber that putatively distributes the endogenous circadian rhythmicity to all tissues expressing melatonin receptors.


Subject(s)
RNA, Messenger/biosynthesis , Receptors, Cell Surface/biosynthesis , Receptors, Cytoplasmic and Nuclear/biosynthesis , Actins/biosynthesis , Actins/genetics , Animals , Antisense Elements (Genetics) , Autoradiography , DNA, Complementary/biosynthesis , DNA, Complementary/isolation & purification , Male , Rats , Rats, Wistar , Receptors, Melatonin , Reverse Transcriptase Polymerase Chain Reaction , Tissue Distribution
9.
Brain Res ; 946(1): 64-71, 2002 Aug 09.
Article in English | MEDLINE | ID: mdl-12133595

ABSTRACT

The aim of the present study was to investigate the daily regulation of both MT1 and MT2 melatonin receptor subtype mRNA expression in the rat SCN in order to clarify their role in the daily variation of SCN melatonin receptors. Existing MT1 and MT2 partial clones were extended by PCR to 982 and 522 bp, respectively. However, while the MT1 clone allowed us to set up a highly sensitive in situ hybridization (ISH) method, we could not detect MT2 expression within the SCN. Therefore, our results suggest that only MT1 mRNA can be correlated with 2-iodo-melatonin binding sites in the rat SCN. Investigation of MT1 mRNA expression throughout the 24 h light/dark cycle or in constant darkness clearly showed that in the two conditions, mRNA expression showed a robust rhythm with two peaks, one after the day/night and one after the night/day transitions in LD, and at the beginning of the subjective night and day in DD, respectively. Furthermore, these variations were not linked to the daily changes in melatonin receptor density. Thus, the transcriptional regulation of MT1 receptors does not appear to play a role in the daily regulation of melatonin binding sites availability.


Subject(s)
Circadian Rhythm , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Suprachiasmatic Nucleus/metabolism , Amino Acid Sequence/genetics , Animals , Base Sequence/genetics , Male , Molecular Sequence Data , Rats , Rats, Wistar , Receptors, Melatonin
10.
Eur J Neurosci ; 15(10): 1632-40, 2002 May.
Article in English | MEDLINE | ID: mdl-12059970

ABSTRACT

The different mechanisms underlying the control of diurnal vs. nocturnal activity are still unknown. Regarding the nocturnal synthesis of the pineal hormone, melatonin, experiments performed on diurnal sheep or bovine and on nocturnal rat or hamster revealed important differences in the regulation of the melatonin rate-limiting enzyme, arylalkylamine N-acetyltransferase (AA-NAT). These observations raised the hypothesis that melatonin synthesis may be different in nocturnal vs. diurnal animals. In this study, we cloned the cDNA coding for Aa-nat and analysed the mechanisms of AA-NAT enzyme activation in the pineal gland of the diurnal grass rat, Arvicanthis ansorgei, and compared them to those of the nocturnal Wistar rat, Rattus norvegicus. Aa-nat gene sequences of both species are 86.6% identical. In Arvicanthis, Aa-nat gene expression is markedly increased at the beginning of the night and is followed by a large increase in AA-NAT activity and melatonin content. In contrast, at the end of the night, the decrease in AA-NAT activity and melatonin content precedes that of Aa-nat mRNA. A beta-adrenergic agonist given at daytime reproduces the nocturnal activation of melatonin synthesis, whereas, a beta-adrenergic antagonist given at night-time inhibits AA-NAT activity and melatonin synthesis independently of Aa-nat mRNA. The day-night regulation of melatonin synthesis in the pineal of the diurnal Arvicanthis, involving a transcriptional activation in early night and a post-translational inhibition at late night, is very similar to that of the nocturnal Wistar rat. In conclusion, the fundamental differences underlying melatonin synthesis among species rely upon phylogenetic rather than behavioural differences.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Circadian Rhythm , Gene Expression , Pineal Gland/physiology , Rodentia/physiology , Adrenergic beta-Agonists/administration & dosage , Adrenergic beta-Agonists/pharmacology , Amino Acid Sequence/genetics , Animals , Cloning, Molecular , DNA, Complementary/genetics , Drug Administration Schedule , Injections , Isoproterenol/administration & dosage , Isoproterenol/pharmacology , Melatonin/metabolism , Molecular Sequence Data , RNA, Messenger/metabolism , Rats , Rats, Wistar , Rodentia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...