Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Environ Technol ; 37(12): 1480-9, 2016.
Article in English | MEDLINE | ID: mdl-26581845

ABSTRACT

This study aimed to compare the performance of an internal combustion engine fed with blends of biodiesel produced from soybean and diesel, and blends of biodiesel produced from beef tallow and diesel. Performance was evaluated in terms of power generated at low loading conditions (0.5, 1.0 and 1.5 kW) and emission of organic and inorganic pollutants. In order to analyse inorganic gases (CO, SO2 and NOx), an automatic analyser was used and the organic emissions (benzene, toluene, ethylbenzene and xylene - BTEX) were carried out using a gas chromatograph. The results indicate that the introduction of the two biodiesels in the fuel caused a reduction in CO, SO2 and BTEX emissions. In addition, the reduction was proportional to the increase in loading regime. Beef tallow biodiesels presented better results regarding emission than soybean biodiesels. The use of pure biodiesels also presented a net reduction in pollutant gas emissions without hindering the engine generator performance.


Subject(s)
Air Pollutants/analysis , Biofuels , Fats/chemistry , Glycine max/chemistry , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis , Air Pollutants/chemistry , Brazil , Volatile Organic Compounds/chemistry
2.
Cien Saude Colet ; 16(8): 3583-90, 2011 Aug.
Article in Portuguese | MEDLINE | ID: mdl-21860958

ABSTRACT

Indoor Air Quality (IAQ) emerged as a science from the 1970s onwards with the energy crisis and the subsequent construction of sealed buildings (without natural ventilation). This mainly occurred in developed countries and it soon came to public attention that lower levels of air exchange in these environments was the main culprit for the increase in concentration of indoor air pollutants. It is common knowledge that ventilation is one of the principal factors that interfere with air quality in indoor environments and that the occupants contribute to the pollution of these environments with their activities. Furthermore, poor indoor air quality is associated with some diseases (cough, rhinitis, allergy, etc.) and with Sick Building Syndrome (SBS). For sampling of the indoor contaminants there are several methodologies, available including passive monitoring systems, active and automatic systems. To ensure a healthy indoor environment, the application of specific legislation needs to be reconciled with research and fostering awareness among the occupants of such buildings. This survey seeks to identify the different contaminants found in internal environments, their effects on human health and the methodologies available for sampling them.


Subject(s)
Air Pollution, Indoor/adverse effects , Sick Building Syndrome/etiology , Humans
3.
Ciênc. Saúde Colet. (Impr.) ; 16(8): 3583-3590, ago. 2011. tab
Article in Portuguese | LILACS | ID: lil-595947

ABSTRACT

A Qualidade do Ar Interno (QAI) surgiu como ciência a partir da década de 70 com a crise energética e a consequente construção dos edifícios selados (desprovidos de ventilação natural), principalmente nos países desenvolvidos, e se destacou após a descoberta de que a diminuição das taxas de troca de ar nesses ambientes era a grande responsável pelo aumento da concentração de poluentes no ar interno. Admite-se que a ventilação seja um dos principais fatores que interferem na qualidade do ar interno e que os próprios ocupantes dos edifícios contribuem substancialmente com a poluição destes ambientes através de suas atividades. Sabe-se ainda que a má qualidade do ar interno está associada a doenças (como tosse, rinite, alergia, etc.) e à Síndrome dos Edifícios Doentes (SED). Para amostragem de substâncias gasosas no ar de ambientes internos dispõe-se de diversas metodologias, sendo as principais: sistemas passivos de monitoramento, sistemas ativos e automáticos. Para a efetiva promoção de um ambiente saudável, deve-se conciliar a aplicação de legislações específicas com pesquisas e conscientização dos ocupantes dos edifícios. Essa revisão objetiva relacionar os diferentes contaminantes encontrados em ambientes internos, seus efeitos à saúde humana e suas metodologias de amostragem.


Indoor Air Quality (IAQ) emerged as a science from the 1970s onwards with the energy crisis and the subsequent construction of sealed buildings (without natural ventilation). This mainly occurred in developed countries and it soon came to public attention that lower levels of air exchange in these environments was the main culprit for the increase in concentration of indoor air pollutants. It is common knowledge that ventilation is one of the principal factors that interfere with air quality in indoor environments and that the occupants contribute to the pollution of these environments with their activities. Furthermore, poor indoor air quality is associated with some diseases (cough, rhinitis, allergy, etc.) and with Sick Building Syndrome (SBS). For sampling of the indoor contaminants there are several methodologies, available including passive monitoring systems, active and automatic systems. To ensure a healthy indoor environment, the application of specific legislation needs to be reconciled with research and fostering awareness among the occupants of such buildings. This survey seeks to identify the different contaminants found in internal environments, their effects on human health and the methodologies available for sampling them.


Subject(s)
Humans , Air Pollution, Indoor/adverse effects , Sick Building Syndrome/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...