Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(26): 14377-14388, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540747

ABSTRACT

The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques.

2.
Soft Matter ; 13(24): 4393-4400, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28581001

ABSTRACT

Our group recently introduced a new process to synthesize nanoparticle shells of about 100 nm, named "hybridosomes®". Here, the structure and mechanical properties of hybridosomes® made from iron oxide nanoparticles and poly(acrylic acid) are characterized using TEM, AFM and an osmotic compression technique. For the latter, the size distribution of the hybridosomes is monitored by nanoparticle tracking analysis (NTA) in the presence of poly(ethylene glycol)s of different molecular weights. It is found that the size of the hybridosomes® can be tuned from ca. 80 nm to over 110 nm by adjusting the amount of nanoparticles and that their shell consists of a single layer of nanoparticles, with a porous structure. The size of the pores is estimated from osmotic compression experiments at ca. 4000 g mol-1. The mechanical properties are measured both at the ensemble level using size measurements under osmotic pressure and at the single nanoparticle level by atomic force microscopy nanoindentation. Both osmotic and AFM experiments are analyzed in the framework of the continuum elastic theory of thin shells and yield a value of Young's modulus of the order of MPa.

3.
Phys Chem Chem Phys ; 16(41): 22775-83, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25238171

ABSTRACT

A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy techniques, including DOSY and NOESY, showing that the DTE switch is weakly adsorbed at the surface of the Ncs through the formation of hydrogen bonds with HDA. Steady state and time-resolved luminescence quenching experiments show a complex behavior, related to the spatial distribution of the emitting defects in the Ncs. Analysis of the data using models previously developed for Ncs supports static quenching. Both isomeric forms (open or closed) of the DTE switch quench the emission of Ncs, the efficiency being more than ten times higher for the closed isomer. The mechanism of quenching is discussed and we show that quenching occurs mainly through resonant energy transfer for the closed isomer and through electron transfer for the open one. The HDA layer mediates the quenching efficiency as only defects located near the surface are quenched.

4.
Chaos ; 16(3): 037110, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17014244

ABSTRACT

We show experimentally and theoretically that reaction systems characterized by a slow induction period followed by a fast evolution to equilibrium can readily generate "spatial bistability" when operated in thin gel reactors diffusively fed from one side. This phenomenon which corresponds to the coexistence of two different stable steady states, not breaking the symmetry of the boundary conditions, can be at the origin of diverse reaction-diffusion instabilities. Using different chemical reactions, we show how stationary pulses, labyrinthine patterns or spatiotemporal oscillations can be generated. Beyond simple reaction-diffusion instabilities, we also demonstrate that the cross coupling of spatial bistability with the size responsiveness of a chemosensitive gel can give rise to autonomous spatiotemporal shape patterns, referred to as chemomechanical structures.


Subject(s)
Diffusion , Nonlinear Dynamics , Catalysis , Chlorine Compounds/chemistry , Gels , Models, Chemical , Models, Theoretical , Oscillometry , Oxides/chemistry , Polyvinyl Alcohol/chemistry , Systems Theory , Time Factors
5.
J Phys Chem A ; 109(35): 7843-9, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16834163

ABSTRACT

The acid-auto-activated chlorite-tetrathionate reaction is studied in a one-side-fed spatial reactor. It was previously shown that in these conditions the unstirred reaction-diffusion system can generate oscillatory and excitable states even though under well-stirred nonequilibrium conditions only steady-state bistability is observed. Numerical simulations suggest that these temporal reaction-diffusion instabilities result from long-range activation by rapidly diffusing protons. We study here experimentally and numerically the effect of introducing into this reaction-diffusion system macromolecular carboxylate species that reduce the effective diffusivity of protons. Consistent with the original assumption, the introduction of such slow mobility proton-binding species quenches both oscillatory and excitability dynamics. Within the bistability domain the direction of the propagation of an interface between the two steady states depends on control parameter value. We elaborate on the fact that beyond a low critical concentration of macromolecular carboxylate species, the stability limit of the "thermodynamic" branch of spatial steady state does not depend on this concentration. Despite the relative simplicity of the kinetic model used in the numerical simulations, the results are in quasi-quantitative agreement with the experimental observations.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(5 Pt 2): 056205, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12513584

ABSTRACT

We show both experimentally and numerically that the time scales separation introduced by long range activation can induce oscillations and excitability in nonequilibrium reaction-diffusion systems that would otherwise only exhibit bistability. Namely, we show that in the chlorite-tetrathionate reaction, where the autocatalytic species H+ diffuses faster than the substrates, the spatial bistability domain in the nonequilibrium phase diagram is extended with oscillatory and excitability domains. A simple model and a more realistic model qualitatively account for the observed dynamical behavior. The latter model provides quantitative agreement with the experiments.

7.
Faraday Discuss ; (120): 353-61; discussion 407-19, 2001.
Article in English | MEDLINE | ID: mdl-11901684

ABSTRACT

The phenomenon of spatial bistability has recently been proposed for a comprehensive understanding of a number of chemical patterns observed in open spatial reactors consisting of thin films of gel diffusively fed from one side. We study experimentally and numerically this phenomenon in the tetrathionate-chlorite reaction characterized by an acid superautocatalysis. We focus on the similarities and differences with previous studies on the chlorine dioxide-iodide reaction. In addition, we show that this reaction, which is only bistable in a continuous stirred tank reactor, can exhibit oscillatory and traveling waves when diffusion comes into play. Our computations suggest that the nonstationary behaviour originates from differential diffusive transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...