Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(23): e202402498, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38530284

ABSTRACT

We used EPR spectroscopy to characterize the structure of RNA duplexes and their internal twist, stretch and bending motions. We prepared eight 20-base-pair-long RNA duplexes containing the rigid spin-label Çm, a cytidine analogue, at two positions and acquired orientation-selective PELDOR/DEER data. By using different frequency bands (X-, Q-, G-band), detailed information about the distance and orientation of the labels was obtained and provided insights into the global conformational dynamics of the RNA duplex. We used 19F Mims ENDOR experiments on three singly Çm- and singly fluorine-labeled RNA duplexes to determine the exact position of the Çm spin label in the helix. In a quantitative comparison to MD simulations of RNA with and without Çm spin labels, we found that state-of-the-art force fields with explicit parameterization of the spin label were able to describe the conformational ensemble present in our experiments. The MD simulations further confirmed that the Çm spin labels are excellent mimics of cytidine inducing only small local changes in the RNA structure. Çm spin labels are thus ideally suited for high-precision EPR experiments to probe the structure and, in conjunction with MD simulations, motions of RNA.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA , Electron Spin Resonance Spectroscopy , RNA/chemistry , Spin Labels
2.
J Magn Reson ; 303: 105-114, 2019 06.
Article in English | MEDLINE | ID: mdl-31039520

ABSTRACT

The tetracycline-binding RNA aptamer (TC-aptamer) binds its cognate ligand the antibiotic tetracycline (TC) via a Mg2+ or Mn2+ ion with high affinity at high divalent metal ion concentrations (KD=800pM, ⩾10 mM). These concentrations lie above the physiological divalent metal ion concentration of ca. 1 mM and it is known from literature, that the binding affinity decreases upon decreasing the divalent metal ion concentration. This work uses a Mn2+ concentration of 1 mM and 1D-hyperfine experiments reveal two pronounced 31P couplings from the RNA besides the 13C signal of 13C-labeled TC. From these 1D-hyperfine data alone, however, no conclusions can be drawn on the binding of TC. Either TC may bind via Mn2+ to the aptamer or TC may form a free Mn-TC complex and some Mn2+ also binds to the aptamer. In this work, we show using 2D-correlated hyperfine spectroscopy at Q-band frequencies (34 GHz), that the 13C and 31P signals can be correlated; thus arising from a single species. We use THYCOS (triple hyperfine correlation spectroscopy) and 2D ELDOR-detected NMR (2D electron electron double resonance detected NMR) for this purpose showing that they are suitable techniques to correlate two different nuclear spin species (13C and 31P) on two different molecules (RNA and TC) to the same electron spin (Mn2+). Out of the two observed 31P-hyperfine couplings, only one shows a clear correlation to 13C. Although THYCOS and 2D EDNMR yield identical results, 2D EDNMR is far more sensitive. THYCOS spectra needed a time factor of ×20 in comparison to 2D EDNMR to achieve a comparable signal-to-noise.


Subject(s)
Manganese/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Tetracycline/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular , RNA/chemistry , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...