Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 3(12): 8714-8721, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019642

ABSTRACT

Lead-free piezoelectric ceramics like K0.5Na0.5NbO3 (KNN) represent an emerging class of biomaterials for medical technology, as they can be used as components in implantable microelectromechanical systems (MEMS) and bioactive scaffolds for tissue stimulation. Such functional materials can act as working components in future in vivo devices, and their addition to current implant designs can greatly improve the biological interaction between host and implant. Despite this, only a few reports have studied the biocompatibility of these materials with living cells. In this work, we investigate the biological response of two different cell lines grown on KNN thin films, and we demonstrate excellent biocompatibility of the KNN films with the cells. Undoped and 0.5 mol % CaTiO3-doped KNN thin films with nanometer-sized roughness were deposited on platinized silicon (SiPt) substrates, and cell proliferation, viability, and morphology of human 161BR fibroblast cells and rat Schwann cells grown on the KNN films and SiPt substrates were investigated and compared to glass control samples. The results show that proliferation rates for the cells grown on the KNN thin films were equally high or higher than those on the glass control samples, and no cytotoxic effect from either the films or the substrate was observed. The work demonstrates that KNN thin films on SiPt substrates are very promising candidates for components in implantable medical devices.

2.
R Soc Open Sci ; 6(1): 180989, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30800353

ABSTRACT

We report on an environmentally friendly and versatile aqueous chemical solution deposition route to epitaxial K0.5Na0.5NbO3 (KNN) thin films. The route is based on the spin coating of an aqueous solution of soluble precursors on SrTiO3 single crystal substrates followed by pyrolysis at 400°C and annealing at 800°C using rapid thermal processing. Strongly textured films with homogeneous thickness were obtained on three different crystallographic orientations of SrTiO3. Epitaxial films were obtained on (111) SrTiO3 substrates, while films consisting of an epitaxial layer close to the substrate followed by an oriented polycrystalline layer were obtained on (100) and (110) SrTiO3 substrates. A K2Nb4O11 secondary phase was observed on the surface of the thin films due to the evaporation of alkali species, while the use of an NaCl/KCl flux reduced the amount of the secondary phase. Ferroelectric behaviour of the films was investigated by PFM, and almost no dependence on the film crystallographic orientation was observed. The permittivity and loss tangent of the films with the NaCl/KCl flux were 870 and 0.04 (100-orientation) and 2250 and 0.025 (110-orientation), respectively, at 1 kHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...