Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 600(7887): 158-163, 2021 12.
Article in English | MEDLINE | ID: mdl-34819667

ABSTRACT

Endogenous DNA damage can perturb transcription, triggering a multifaceted cellular response that repairs the damage, degrades RNA polymerase II and shuts down global transcription1-4. This response is absent in the human disease Cockayne syndrome, which is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins5-7. However, the source of endogenous DNA damage and how this leads to the prominent degenerative features of this disease remain unknown. Here we find that endogenous formaldehyde impedes transcription, with marked physiological consequences. Mice deficient in formaldehyde clearance (Adh5-/-) and CSB (Csbm/m; Csb is also known as Ercc6) develop cachexia and neurodegeneration, and succumb to kidney failure, features that resemble human Cockayne syndrome. Using single-cell RNA sequencing, we find that formaldehyde-driven transcriptional stress stimulates the expression of the anorexiogenic peptide GDF15 by a subset of kidney proximal tubule cells. Blocking this response with an anti-GDF15 antibody alleviates cachexia in Adh5-/-Csbm/m mice. Therefore, CSB provides protection to the kidney and brain against DNA damage caused by endogenous formaldehyde, while also suppressing an anorexic endocrine signal. The activation of this signal might contribute to the cachexia observed in Cockayne syndrome as well as chemotherapy-induced anorectic weight loss. A plausible evolutionary purpose for such a response is to ensure aversion to genotoxins in food.


Subject(s)
Cockayne Syndrome , DNA Damage , Formaldehyde/adverse effects , Stress, Physiological/drug effects , Transcription, Genetic/drug effects , Alcohol Dehydrogenase/deficiency , Alcohol Dehydrogenase/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cachexia/complications , Cockayne Syndrome/chemically induced , Cockayne Syndrome/complications , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , DNA Repair Enzymes/deficiency , Disease Models, Animal , Female , Formaldehyde/metabolism , Growth Differentiation Factor 15/antagonists & inhibitors , Growth Differentiation Factor 15/biosynthesis , Growth Differentiation Factor 15/genetics , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Mice , Poly-ADP-Ribose Binding Proteins/deficiency , Renal Insufficiency/complications , Transcription, Genetic/genetics
2.
DNA Repair (Amst) ; 107: 103208, 2021 11.
Article in English | MEDLINE | ID: mdl-34416541

ABSTRACT

Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.


Subject(s)
DNA Repair
3.
Cell ; 180(6): 1245-1261.e21, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32142654

ABSTRACT

In response to transcription-blocking DNA damage, cells orchestrate a multi-pronged reaction, involving transcription-coupled DNA repair, degradation of RNA polymerase II (RNAPII), and genome-wide transcription shutdown. Here, we provide insight into how these responses are connected by the finding that ubiquitylation of RNAPII itself, at a single lysine (RPB1 K1268), is the focal point for DNA-damage-response coordination. K1268 ubiquitylation affects DNA repair and signals RNAPII degradation, essential for surviving genotoxic insult. RNAPII degradation results in a shutdown of transcriptional initiation, in the absence of which cells display dramatic transcriptome alterations. Additionally, regulation of RNAPII stability is central to transcription recovery-persistent RNAPII depletion underlies the failure of this process in Cockayne syndrome B cells. These data expose regulation of global RNAPII levels as integral to the cellular DNA-damage response and open the intriguing possibility that RNAPII pool size generally affects cell-specific transcription programs in genome instability disorders and even normal cells.


Subject(s)
DNA Damage , RNA Polymerase II/metabolism , DNA Repair , HEK293 Cells , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Ubiquitination , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...