Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
medRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712177

ABSTRACT

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays. In five participants with cervical spinal cord injury, across two study locations, this procedure successfully enabled ICMS-evoked sensations localized to at least the first four digits of the hand. The imaging and planning procedures developed through this clinical trial provide a roadmap for other brain-computer interface studies to ensure successful placement of stimulation electrodes.

2.
medRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712172

ABSTRACT

Time-order error, a psychophysical phenomenon in which the duration in between successive stimuli alters perception, has been studied for decades by neuroscientists and psychologists. To date, however, the locus of these effects is unknown. We use intracortical microstimulation of somatosensory cortex in humans as a tool to bypass initial stages of processing and restrict the possible locations that signals could be modified. We find that, using both amplitude discrimination and magnitude estimation paradigms, intracortical microstimulation reliably evoked time-order errors across all participants. Points of subjective equality were symmetrically shifted during amplitude discrimination experiments and the intensity of a successive stimulus was perceived as being more intense when compared to single stimulus trials in magnitude estimation experiments. The error was reduced for both paradigms at longer inter-stimulus intervals. These results show that direct activation of primary somatosensory cortex is sufficient to induce time-order errors.

3.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405798

ABSTRACT

Regaining sensory feedback is pivotal for people living with limb amputation. Electrical stimulation of sensory fibers in peripheral nerves has been shown to restore focal percepts in the missing limb. However, conventional rectangular current pulses induce sensations often described as unnatural. This is likely due to the synchronous and periodic nature of activity evoked by these pulses. Here we introduce a fast-oscillating amplitude-modulated sinusoidal (FAMS) stimulation waveform that desynchronizes evoked neural activity. We used a computational model to show that sinusoidal waveforms evoke asynchronous and irregular firing and that firing patterns are frequency dependent. We designed the FAMS waveform to leverage both low- and high-frequency effects and found that membrane non-linearities enhance neuron-specific differences when exposed to FAMS. We implemented this waveform in a feline model of peripheral nerve stimulation and demonstrated that FAMS-evoked activity is more asynchronous than activity evoked by rectangular pulses, while being easily controllable with simple stimulation parameters. These results represent an important step towards biomimetic stimulation strategies useful for clinical applications to restore sensory feedback.

4.
Nat Commun ; 14(1): 7270, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949923

ABSTRACT

The primary motor (M1) and somatosensory (S1) cortices play critical roles in motor control but the signaling between these structures is poorly understood. To fill this gap, we recorded - in three participants in an ongoing human clinical trial (NCT01894802) for people with paralyzed hands - the responses evoked in the hand and arm representations of M1 during intracortical microstimulation (ICMS) in the hand representation of S1. We found that ICMS of S1 activated some M1 neurons at short, fixed latencies consistent with monosynaptic activation. Additionally, most of the ICMS-evoked responses in M1 were more variable in time, suggesting indirect effects of stimulation. The spatial pattern of M1 activation varied systematically: S1 electrodes that elicited percepts in a finger preferentially activated M1 neurons excited during that finger's movement. Moreover, the indirect effects of S1 ICMS on M1 were context dependent, such that the magnitude and even sign relative to baseline varied across tasks. We tested the implications of these effects for brain-control of a virtual hand, in which ICMS conveyed tactile feedback. While ICMS-evoked activation of M1 disrupted decoder performance, this disruption was minimized using biomimetic stimulation, which emphasizes contact transients at the onset and offset of grasp, and reduces sustained stimulation.


Subject(s)
Motor Cortex , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Motor Cortex/physiology , Neurons/physiology , Movement/physiology , Hand , Electric Stimulation
5.
Article in English | MEDLINE | ID: mdl-37860289

ABSTRACT

Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.

6.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37425877

ABSTRACT

When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin. To provide intuitive location information, tactile sensors on the robotic hand drive ICMS through electrodes that evoke sensations at skin locations matching sensor locations. This approach requires that ICMS-evoked sensations be focal, stable, and distributed over the hand. To systematically investigate the localization of ICMS-evoked sensations, we analyzed the projected fields (PFs) of ICMS-evoked sensations - their location and spatial extent - from reports obtained over multiple years from three participants implanted with microelectrode arrays in S1. First, we found that PFs vary widely in their size across electrodes, are highly stable within electrode, are distributed over large swaths of each participant's hand, and increase in size as the amplitude or frequency of ICMS increases. Second, while PF locations match the locations of the receptive fields (RFs) of the neurons near the stimulating electrode, PFs tend to be subsumed by the corresponding RFs. Third, multi-channel stimulation gives rise to a PF that reflects the conjunction of the PFs of the component channels. By stimulating through electrodes with largely overlapping PFs, then, we can evoke a sensation that is experienced primarily at the intersection of the component PFs. To assess the functional consequence of this phenomenon, we implemented multichannel ICMS-based feedback in a bionic hand and demonstrated that the resulting sensations are more localizable than are those evoked via single-channel ICMS.

7.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-36824713

ABSTRACT

Manual interactions with objects are supported by tactile signals from the hand. This tactile feedback can be restored in brain-controlled bionic hands via intracortical microstimulation (ICMS) of somatosensory cortex (S1). In ICMS-based tactile feedback, contact force can be signaled by modulating the stimulation intensity based on the output of force sensors on the bionic hand, which in turn modulates the perceived magnitude of the sensation. In the present study, we gauged the dynamic range and precision of ICMS-based force feedback in three human participants implanted with arrays of microelectrodes in S1. To this end, we measured the increases in sensation magnitude resulting from increases in ICMS amplitude and participant's ability to distinguish between different intensity levels. We then assessed whether we could improve the fidelity of this feedback by implementing "biomimetic" ICMS-trains, designed to evoke patterns of neuronal activity that more closely mimic those in natural touch, and by delivering ICMS through multiple channels at once. We found that multi-channel biomimetic ICMS gives rise to stronger and more distinguishable sensations than does its single-channel counterpart. Finally, we implemented biomimetic multi-channel feedback in a bionic hand and had the participant perform a compliance discrimination task. We found that biomimetic multi-channel tactile feedback yielded improved discrimination over its single-channel linear counterpart. We conclude that multi-channel biomimetic ICMS conveys finely graded force feedback that more closely approximates the sensitivity conferred by natural touch.

8.
Assist Technol ; 35(3): 258-270, 2023 May 04.
Article in English | MEDLINE | ID: mdl-34982647

ABSTRACT

Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians (68.8%), regulators (67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.


Subject(s)
Amputees , Artificial Limbs , Adult , Humans , Quality of Life , Reproducibility of Results , Prospective Studies , Upper Extremity/surgery , Prosthesis Design
9.
J Physiol ; 601(15): 3103-3121, 2023 08.
Article in English | MEDLINE | ID: mdl-36409303

ABSTRACT

Seventy years ago, Hodgkin and Huxley published the first mathematical model to describe action potential generation, laying the foundation for modern computational neuroscience. Since then, the field has evolved enormously, with studies spanning from basic neuroscience to clinical applications for neuromodulation. Computer models of neuromodulation have evolved in complexity and personalization, advancing clinical practice and novel neurostimulation therapies, such as spinal cord stimulation. Spinal cord stimulation is a therapy widely used to treat chronic pain, with rapidly expanding indications, such as restoring motor function. In general, simulations contributed dramatically to improve lead designs, stimulation configurations, waveform parameters and programming procedures and provided insight into potential mechanisms of action of electrical stimulation. Although the implementation of neural models are relentlessly increasing in number and complexity, it is reasonable to ask whether this observed increase in complexity is necessary for improved accuracy and, ultimately, for clinical efficacy. With this aim, we performed a systematic literature review and a qualitative meta-synthesis of the evolution of computational models, with a focus on complexity, personalization and the use of medical imaging to capture realistic anatomy. Our review showed that increased model complexity and personalization improved both mechanistic and translational studies. More specifically, the use of medical imaging enabled the development of patient-specific models that can help to transform clinical practice in spinal cord stimulation. Finally, we combined our results to provide clear guidelines for standardization and expansion of computational models for spinal cord stimulation.


Subject(s)
Chronic Pain , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Chronic Pain/therapy , Computer Simulation , Electric Stimulation , Spinal Cord/physiology
10.
J Neural Eng ; 19(6)2022 11 22.
Article in English | MEDLINE | ID: mdl-36343359

ABSTRACT

Objective.Epidural spinal cord stimulation (SCS) is a potential intervention to improve limb and autonomic functions, with lumbar stimulation improving locomotion and thoracic stimulation regulating blood pressure. Here, we asked whether sacral SCS could be used to target the lower urinary tract (LUT) and used a high-density epidural electrode array to test whether individual electrodes could selectively recruit LUT nerves.Approach. We placed a high-density epidural SCS array on the dorsal surface of the sacral spinal cord and cauda equina of anesthetized cats and recorded the stimulation-evoked activity from nerve cuffs on the pelvic, pudendal and sciatic nerves.Main results. Here we show that sacral SCS evokes responses in nerves innervating the bladder and urethra and that these nerves can be activated selectively. Sacral SCS always recruited the pelvic and pudendal nerves and selectively recruited both of these nerves in all but one animal. Individual branches of the pudendal nerve were always recruited as well. Electrodes that selectively recruited specific peripheral nerves were spatially clustered on the arrays, suggesting anatomically organized sensory pathways.Significance.This selective recruitment demonstrates a mechanism to directly modulate bladder and urethral function through known reflex pathways, which could be used to restore bladder and urethral function after injury or disease.


Subject(s)
Pudendal Nerve , Spinal Cord Injuries , Spinal Cord Stimulation , Animals , Urinary Bladder/innervation , Urethra/innervation , Urethra/physiology , Reflex/physiology , Spinal Cord , Electric Stimulation/methods
11.
Sci Rep ; 12(1): 17002, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220864

ABSTRACT

Modern myoelectric prosthetic hands have multiple independently controllable degrees of freedom, but require constant visual attention to use effectively. Somatosensory feedback provides information not available through vision alone and is essential for fine motor control of our limbs. Similarly, stimulation of the nervous system can potentially provide artificial somatosensory feedback to reduce the reliance on visual cues to efficiently operate prosthetic devices. We have shown previously that epidural stimulation of the lateral cervical spinal cord can evoke tactile sensations perceived as emanating from the missing arm and hand in people with upper-limb amputation. In this case study, two subjects with upper-limb amputation used this somatotopically-matched tactile feedback to discriminate object size and compliance while controlling a prosthetic hand. With less than 30 min of practice each day, both subjects were able to use artificial somatosensory feedback to perform a subset of the discrimination tasks at a success level well above chance. Subject 1 was consistently more adept at determining object size (74% accuracy; chance: 33%) while Subject 2 achieved a higher accuracy level in determining object compliance (60% accuracy; chance 33%). In each subject, discrimination of the other object property was only slightly above or at chance level suggesting that the task design and stimulation encoding scheme are important determinants of which object property could be reliably identified. Our observations suggest that changes in the intensity of artificial somatosensory feedback provided via spinal cord stimulation can be readily used to infer information about object properties with minimal training.


Subject(s)
Amputees , Artificial Limbs , Cervical Cord , Feedback, Sensory/physiology , Hand/physiology , Humans , Touch/physiology , Upper Extremity
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1607-1610, 2022 07.
Article in English | MEDLINE | ID: mdl-36086204

ABSTRACT

Spinal cord stimulation (SCS) could be used to restore control of the bladder after spinal cord injury, but substantial development is still required to tailor this technology for bladder function. Computational models could be utilized to accelerate these efforts enabling in-silico optimization of stimulation parameters. However, no model of the spinal pudendo-vesical reflex can simulate the effect of stimulation amplitude on neuron recruitment. This limitation hinders accurate prediction of bladder pressure changes for different stimulation configurations. Here., we implemented an open-source realistic spiking neural network model of the pudendo-vesical reflex enabling exploration of the impact of stimulation amplitude and frequency on bladder pressure changes. We used the o2S2 PARC platform to design a parallel implementation of the bladder reflex circuits with NEURON. Our model successfully reproduced and expanded previous studies., producing a decrease in bladder pressure at low stimulation frequency (10 Hz) and excitation at high stimulation frequency (≥33 Hz) in isovolumetric experiments. We then explored the effect of mixed nerve recruitment., simulating a common case of poorly selective spinal cord stimulation. We found that high recruitments of pudendal nerve axons are necessary to maintain this bi-modal behavior., regardless of stimulation specificity. Our framework is fully open-source and can be used to simulate any type of axon stimulations such as SCS and peripheral nerve stimulation.


Subject(s)
Spinal Cord Injuries , Urinary Bladder , Computer Simulation , Electric Stimulation , Humans , Reflex/physiology , Spinal Cord Injuries/therapy , Urinary Bladder/physiology
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 744-747, 2022 07.
Article in English | MEDLINE | ID: mdl-36086335

ABSTRACT

Bladder dysfunction is a major health risk for people with spinal cord injury. Recently, we have demonstrated that epidural sacral spinal cord stimulation (SCS) can be used to activate lower urinary tract nerves and provide both major components of bladder control: voiding and continence. To effectively control these functions, it is necessary to selectively recruit the afferents of the pudendal nerve that evoke these distinct bladder reflexes. Translation of this innovation to clinical practice requires an understanding of optimal electrode placements and stimulation parameters to guide surgical practice and therapy design. Computational modeling is an important tool to address many of these experimentally intractable stimulation optimization questions. Here, we built a realistic MRI-based finite element computational model of the feline sacral spinal cord which included realistic axon trajectories in the dorsal and ventral roots. We coupled the model with biophysical simulations of membrane dynamics of afferent and efferent axons that project to the lower urinary tract through the pelvic and pudendal nerves. We simulated the electromagnetic fields arising from stimulation through SCS electrodes and calculated the expected recruitment of pelvic and pudendal fibers. We found that SCS can selectively recruit pudendal afferents, in agreement with our experimental data in cats. Our results suggest that SCS is a promising technology to improve bladder function after spinal cord injury, and computational modeling unlocks the potential for highly optimized, selective stimulation. Clinical Relevance - This model provides a method to non-invasively establish electrode placement and stimulation parameters for improving bladder function with epidural spinal cord stimulation.


Subject(s)
Spinal Cord Injuries , Urinary Bladder , Animals , Cats , Electric Stimulation/methods , Humans , Urinary Bladder/physiology , Urination/physiology
14.
Brain Stimul ; 15(4): 987-995, 2022.
Article in English | MEDLINE | ID: mdl-35671947

ABSTRACT

BACKGROUND: Intracortical microstimulation (ICMS) of the somatosensory cortex can restore sensation to people with neurological diseases. However, many aspects of ICMS are poorly understood, including the effect of stimulation on percept intensity over time. OBJECTIVE: Here, we evaluate how tactile percepts evoked by ICMS in the somatosensory cortex of a human participant adapt over time. METHODS: We delivered continuous and intermittent ICMS to the somatosensory cortex and assessed the reported intensity of tactile percepts over time in a human participant. Experiments were conducted over approximately one year and linear mixed effects models were used to assess significance. RESULTS: Continuous stimulation at high frequencies led to rapid decreases in intensity, while low frequency stimulation maintained percept intensity for longer periods. Burst-modulated stimulation extended the time before the intensity began to decrease, but all protocols ultimately resulted in complete sensation loss within 1 min. Intermittent stimulation paradigms with several seconds between stimulus trains evoked intermittent percepts and also led to decreases in intensity on many electrodes, but never resulted in extinction of the sensation after over 3 min of stimulation. Longer breaks between each pulse train resulted in some recovery in the intensity of the stimulus-evoked percepts. For several electrodes, intermittent stimulation had almost no effect on the perceived intensity. CONCLUSIONS: Intermittent ICMS paradigms were more effective at maintaining percepts. Given that transient neural activity dominates the response in somatosensory cortex during mechanical contact onsets and offsets, providing brief stimulation trains at these times may more closely represent natural cortical activity and have the additional benefit of prolonging the ability to evoke sensations over longer time periods.


Subject(s)
Somatosensory Cortex , Touch , Electric Stimulation/methods , Heart Rate , Humans , Somatosensory Cortex/physiology , Touch/physiology
15.
Front Bioeng Biotechnol ; 9: 759711, 2021.
Article in English | MEDLINE | ID: mdl-34950640

ABSTRACT

Brain-computer interfaces are being developed to restore movement for people living with paralysis due to injury or disease. Although the therapeutic potential is great, long-term stability of the interface is critical for widespread clinical implementation. While many factors can affect recording and stimulation performance including electrode material stability and host tissue reaction, these factors have not been investigated in human implants. In this clinical study, we sought to characterize the material integrity and biological tissue encapsulation via explant analysis in an effort to identify factors that influence electrophysiological performance. We examined a total of six Utah arrays explanted from two human participants involved in intracortical BCI studies. Two platinum (Pt) arrays were implanted for 980 days in one participant (P1) and two Pt and two iridium oxide (IrOx) arrays were implanted for 182 days in the second participant (P2). We observed that the recording quality followed a similar trend in all six arrays with an initial increase in peak-to-peak voltage during the first 30-40 days and gradual decline thereafter in P1. Using optical and two-photon microscopy we observed a higher degree of tissue encapsulation on both arrays implanted for longer durations in participant P1. We then used scanning electron microscopy and energy dispersive X-ray spectroscopy to assess material degradation. All measures of material degradation for the Pt arrays were found to be more prominent in the participant with a longer implantation time. Two IrOx arrays were subjected to brief survey stimulations, and one of these arrays showed loss of iridium from most of the stimulated sites. Recording performance appeared to be unaffected by this loss of iridium, suggesting that the adhesion of IrOx coating may have been compromised by the stimulation, but the metal layer did not detach until or after array removal. In summary, both tissue encapsulation and material degradation were more pronounced in the arrays that were implanted for a longer duration. Additionally, these arrays also had lower signal amplitude and impedance. New biomaterial strategies that minimize fibrotic encapsulation and enhance material stability should be developed to achieve high quality recording and stimulation for longer implantation periods.

16.
Elife ; 102021 07 27.
Article in English | MEDLINE | ID: mdl-34313221

ABSTRACT

Microstimulation in the somatosensory cortex can evoke artificial tactile percepts and can be incorporated into bidirectional brain-computer interfaces (BCIs) to restore function after injury or disease. However, little is known about how stimulation parameters themselves affect perception. Here, we stimulated through microelectrode arrays implanted in the somatosensory cortex of two human participants with cervical spinal cord injury and varied the stimulus amplitude, frequency, and train duration. Increasing the amplitude and train duration increased the perceived intensity on all tested electrodes. Surprisingly, we found that increasing the frequency evoked more intense percepts on some electrodes but evoked less-intense percepts on other electrodes. These different frequency-intensity relationships were divided into three groups, which also evoked distinct percept qualities at different stimulus frequencies. Neighboring electrode sites were more likely to belong to the same group. These results support the idea that stimulation frequency directly controls tactile perception and that these different percepts may be related to the organization of somatosensory cortex, which will facilitate principled development of stimulation strategies for bidirectional BCIs.


Subject(s)
Brain-Computer Interfaces , Electric Stimulation , Somatosensory Cortex/physiology , Touch Perception , Adult , Electrodes, Implanted , Feedback, Physiological , Humans , Male , Microelectrodes , Touch
17.
J Neural Eng ; 18(4)2021 08 13.
Article in English | MEDLINE | ID: mdl-34320481

ABSTRACT

Objective.Intracortical microstimulation (ICMS) in somatosensory cortex can restore sensation to people with spinal cord injury. However, the recording quality from implanted microelectrodes can degrade over time and limitations in stimulation longevity have been considered a potential barrier to the clinical use of ICMS. Our objective was to evaluate recording stability of intracortical electrodes implanted in the motor and somatosensory cortex of one person. The electrodes in motor cortex had platinum tips and were not stimulated, while the electrodes in somatosensory cortex had sputtered iridium oxide film (SIROF) tips and were stimulated. Additionally, we measured how well ICMS was able to evoke sensations over time.Approach. We implanted microelectrode arrays with SIROF tips in the somatosensory cortex (SIROF-sensory) of a human participant with a cervical spinal cord injury. We regularly stimulated these electrodes to evoke tactile sensations on the hand. Here, we quantify the stability of these electrodes in comparison to non-stimulated platinum electrodes implanted in the motor cortex (platinum-motor) over 1500 days with recorded signal quality and electrode impedances. Additionally, we quantify the stability of ICMS-evoked sensations using detection thresholds.Main results. We found that recording quality, as assessed by the number of electrodes with high-amplitude waveforms (>100µV peak-to-peak), peak-to-peak voltage, noise, and signal-to-noise ratio, decreased over time on SIROF-sensory and platinum-motor electrodes. However, SIROF-sensory electrodes were more likely to continue to record high-amplitude signals than platinum-motor electrodes. Interestingly, the detection thresholds for stimulus-evoked sensations decreased over time from a median of 31.5µA at day 100-10.4µA at day 1500, with the largest changes occurring between day 100 and 500.Significance. These results demonstrate that ICMS in human somatosensory cortex can be provided over long periods of time without deleterious effects on recording or stimulation capabilities. In fact, the sensitivity to stimulation improved over time.


Subject(s)
Hand , Somatosensory Cortex , Electric Stimulation , Electrodes, Implanted , Humans , Microelectrodes , Touch
18.
Science ; 372(6544): 831-836, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34016775

ABSTRACT

Prosthetic arms controlled by a brain-computer interface can enable people with tetraplegia to perform functional movements. However, vision provides limited feedback because information about grasping objects is best relayed through tactile feedback. We supplemented vision with tactile percepts evoked using a bidirectional brain-computer interface that records neural activity from the motor cortex and generates tactile sensations through intracortical microstimulation of the somatosensory cortex. This enabled a person with tetraplegia to substantially improve performance with a robotic limb; trial times on a clinical upper-limb assessment were reduced by half, from a median time of 20.9 to 10.2 seconds. Faster times were primarily due to less time spent attempting to grasp objects, revealing that mimicking known biological control principles results in task performance that is closer to able-bodied human abilities.


Subject(s)
Arm/physiology , Artificial Limbs , Brain-Computer Interfaces , Quadriplegia/therapy , Robotics , Touch/physiology , Adult , Arm/innervation , Hand Strength/physiology , Humans , Male , Motor Cortex/physiology , Movement , Somatosensory Cortex/physiology
19.
PLoS Comput Biol ; 16(12): e1008350, 2020 12.
Article in English | MEDLINE | ID: mdl-33326417

ABSTRACT

Computational models of the musculoskeletal system are scientific tools used to study human movement, quantify the effects of injury and disease, plan surgical interventions, or control realistic high-dimensional articulated prosthetic limbs. If the models are sufficiently accurate, they may embed complex relationships within the sensorimotor system. These potential benefits are limited by the challenge of implementing fast and accurate musculoskeletal computations. A typical hand muscle spans over 3 degrees of freedom (DOF), wrapping over complex geometrical constraints that change its moment arms and lead to complex posture-dependent variation in torque generation. Here, we report a method to accurately and efficiently calculate musculotendon length and moment arms across all physiological postures of the forearm muscles that actuate the hand and wrist. Then, we use this model to test the hypothesis that the functional similarities of muscle actions are embedded in muscle structure. The posture dependent muscle geometry, moment arms and lengths of modeled muscles were captured using autogenerating polynomials that expanded their optimal selection of terms using information measurements. The iterative process approximated 33 musculotendon actuators, each spanning up to 6 DOFs in an 18 DOF model of the human arm and hand, defined over the full physiological range of motion. Using these polynomials, the entire forearm anatomy could be computed in <10 µs, which is far better than what is required for real-time performance, and with low errors in moment arms (below 5%) and lengths (below 0.4%). Moreover, we demonstrate that the number of elements in these autogenerating polynomials does not increase exponentially with increasing muscle complexity; complexity increases linearly instead. Dimensionality reduction using the polynomial terms alone resulted in clusters comprised of muscles with similar functions, indicating the high accuracy of approximating models. We propose that this novel method of describing musculoskeletal biomechanics might further improve the applications of detailed and scalable models to describe human movement.


Subject(s)
Computational Biology , Musculoskeletal Physiological Phenomena , Biomechanical Phenomena , Forearm/physiology , Humans , Muscle, Skeletal/physiology
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3355-3358, 2020 07.
Article in English | MEDLINE | ID: mdl-33018723

ABSTRACT

After a spinal cord injury, a person may grasp objects using a brain-computer interface (BCI) to control a robot arm. However, most BCIs do not restore somatosensory percepts that would enable someone to sense grasp force. Intracortical microstimulation (ICMS) in the somatosensory cortex can evoke tactile sensations and may therefore offer a viable solution to provide grasp force feedback. We investigated whether a bidirectional BCI could improve grasp force control over a BCI using only visual feedback. When evaluating the error of the applied force during a force matching task, we found that ICMS feedback improved overall applied grasp force accuracy.


Subject(s)
Brain-Computer Interfaces , Feedback , Hand Strength , Humans , Somatosensory Cortex , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...