Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Proc ; 14(Suppl 8): 7, 2020.
Article in English | MEDLINE | ID: mdl-32577127

ABSTRACT

Primary ciliary dyskinesia (PCD) is an inherited ciliopathy leading to chronic suppurative lung disease, chronic rhinosinusitis, middle ear disease, sub-fertility and situs abnormalities. As PCD is rare, it is important that scientists and clinicians foster international collaborations to share expertise in order to provide the best possible diagnostic and management strategies. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a multidisciplinary network funded by EU COST Action (BM1407) to coordinate innovative basic science and clinical research from across the world to drive advances in the field. The fourth and final BEAT-PCD Conference and fifth PCD Training School were held jointly in March 2019 in Poznan, Poland. The varied program of plenaries, workshops, break-out sessions, oral and poster presentations were aimed to enhance the knowledge and skills of delegates, whilst also providing a collaborative platform to exchange ideas. In this final BEAT-PCD conference we were able to build upon programmes developed throughout the lifetime of the COST Action. These proceedings report on the conference, highlighting some of the successes of the BEAT-PCD programme.

3.
Sci Rep ; 9(1): 20069, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882915

ABSTRACT

Extremely premature infants are prone to severe respiratory infections, and the mechanisms underlying this exceptional susceptibility are largely unknown. Nasal epithelial cells (NEC) represent the first-line of defense and adult-derived ALI cell culture models show promising results in mimicking in vivo physiology. Therefore, the aim of this study was to develop a robust and reliable protocol for generating well-differentiated cell culture models from NECs of extremely premature infants. Nasal brushing was performed in 13 extremely premature infants at term corrected age and in 11 healthy adult controls to obtain NECs for differentiation at air-liquid interface (ALI). Differentiation was verified using imaging and functional analysis. Successful isolation and differentiation was achieved for 5 (38.5%) preterm and 5 (45.5%) adult samples. Preterm and adult ALI-cultures both showed well-differentiated morphology and ciliary function, however, preterm cultures required significantly longer cultivation times for acquiring full differentiation (44 ± 3.92 vs. 23 ± 1.83 days; p < 0.0001). Moreover, we observed that recent respiratory support may impair successful NECs isolation. Herewithin, we describe a safe, reliable and reproducible method to generate well-differentiated ALI-models from NECs of extremely premature infants. These models provide a valuable foundation for further studies regarding immunological and inflammatory responses and respiratory disorders in extremely premature infants.


Subject(s)
Cell Differentiation , Models, Biological , Nasal Mucosa/cytology , Adult , Case-Control Studies , Cells, Cultured , Disease Susceptibility , Humans , Infant, Extremely Premature , Infant, Newborn , Reproducibility of Results , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...