Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5716, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37714864

ABSTRACT

Molybdenum supported on zeolites has been extensively studied as a catalyst for methane dehydroaromatization. Despite significant progress, the actual intermediates and particularly the first C-C bond formation have not yet been elucidated. Herein we report evolution of methyl radicals during non-oxidative methane activation over molybdenum single sites, which leads selectively to value-added chemicals. Operando X-ray absorption spectroscopy and online synchrotron vacuum ultraviolet photoionization mass spectroscopy in combination with electron microscopy and density functional theory calculations reveal the essential role of molybdenum single sites in the generation of methyl radicals and that the formation rate of methyl radicals is linearly correlated with the number of molybdenum single sites. Methyl radicals transform to ethane in the gas phase, which readily dehydrogenates to ethylene in the absence of zeolites. This is essentially similar to the reaction pathway over the previously reported SiO2 lattice-confined single site iron catalyst. However, the availability of a zeolite, either in a physical mixture or as a support, directs the subsequent reaction pathway towards aromatization within the zeolite confined pores, resulting in benzene as the dominant hydrocarbon product. The findings reveal that methyl radical chemistry could be a general feature for metal single site catalysis regardless of the support (either zeolites MCM-22 and ZSM-5 or SiO2) whereas the reaction over aggregated molybdenum carbide nanoparticles likely facilitates carbon deposition through surface C-C coupling. These findings allow furthering the fundamental insights into non-oxidative methane conversion to value-added chemicals.

2.
Inorg Chem ; 61(49): 19678-19694, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36441526

ABSTRACT

The phase width of the copper hydroxycarbonate malachite, Cu2CO3(OH)2, upon substitution with magnesium has been studied in detail. In extension of a previous study on amorphous precursors, the introduction of a hydrothermal aging step allowed the retrieval of crystalline hydroxycarbonate samples with up to 37 atom % Mg (metal content) that are suitable candidates as precursors to Cu/MgO catalysts for CO hydrogenation. Simultaneous refinements of X-ray powder diffraction and pair distribution function (PDF) data as well as complementary spectroscopic insight (X-ray absorption and infrared spectroscopy) revealed that samples with up to 18 atom % Mg are phase-pure magnesian malachites but the magnesium content can be increased beyond this threshold when mcguinnessite (CuMgCO3(OH)2) is accepted as a side phase. In a complementary study, a continuous increase of the magnesium fraction was found during aging and the corresponding structural evolution was studied by means of PDF. These findings add significant insight into the aging chemistry of crystalline Cu,Mg hydroxycarbonates. Furthermore, both phase-pure magnesian malachite and mcguinnessite-containing samples with up to 37 atom % Mg have been examined by thermogravimetry, X-ray powder diffraction, and N2 physisorption and were found to be promising candidates for use as precursors for the preparation of Cu/MgO catalysts.


Subject(s)
Copper , Organometallic Compounds , Copper/chemistry , Magnesium/chemistry , X-Ray Diffraction , Magnesium Oxide , Spectrophotometry, Infrared
3.
Phys Chem Chem Phys ; 22(20): 11713-11723, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32407426

ABSTRACT

The structural dynamics and phase transformations of an iron molybdate catalyst with excess molybdenum trioxide (Mo/Fe = 2.0) were studied during redox cycling of the catalyst using in situ multi-edge X-ray absorption spectroscopy (XAS) at the Mo K-edge (transmission mode) and Fe K-edge (fluorescence mode) in combination with X-ray diffraction (XRD). X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis showed that heating under reducing conditions with methanol up to 400 °C produced MoO2 and FeMoO4. Linear combination fitting (LCF) analysis showed that iron was reduced completely, while molybdenum remained partly oxidized (60% as Mo(vi)). Complementary in situ XRD also supported the phase transformation due to reduction of Fe2(MoO4)3 and MoO3 to FeMoO4 and MoO2. Subsequent heating under oxidative conditions from 200 to 500 °C transformed the catalyst into its initial state via Fe2O3 and extra MoO3 as intermediate phases. This underlines the segregation and iron enrichment during redox cycling. MoO3 volatilization, observed under industrial reaction conditions of a methanol and oxygen containing atmosphere, causes this segregation to be permanent. Complete regeneration could only be achieved at 500 °C, which is significantly higher than industrial reaction temperatures. Overall, multi edge in situ XAS along with complementary XRD was found to be an ideal tool for tracing the different amorphous and crystalline phases present during redox cycling of the catalyst.

4.
Chemphyschem ; 18(20): 2835-2839, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28700813

ABSTRACT

Several strategies have been proposed to replace soluble metallorganic complexes in organic solvents by similar molecular entities immobilized on non-reactive solids. The characterization of these complexes at atomic and molecular level during synthesis is demanding but essential to guide rational design. In the present work, the formation of cobalt salicylaldimine complex on γ-aminopropyl modified silica (SiO2 ) was monitored in ethanol on-line by Fourier transform infrared spectroscopy (FTIR) and in situ X-ray absorption spectroscopy (XAS) simultaneously using two independent cells. The organic ligand was monitored by FTIR to follow the stepwise synthesis of the Co-salicylaldimine complex. The oxidation state of Co, obtained by XANES, was found to be +2, while different coordination environments were observed in the presence or absence of the pendant organic ligand produced in situ on SiO2 . EXAFS analysis inferred that the oxidation state and the local structure of the Co2+ ion on the modified SiO2 surface was similar to that of a salen-complex with four Co-O/N bonds.

5.
J Chem Phys ; 139(3): 034303, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23883023

ABSTRACT

X-ray absorption fine structure spectra of five copper(I) thiourea complexes [Cu4(thu)6 (NO3)4 (H2O)4] (1), [Cu4(thu)9 (NO3)4 (H2O)4] (2), [Cu2(thu)6 (SO4) H2O] (3), [Cu2(thu)5 (SO4) (H2O)3] (4), and [Cu(thu)Cl 0.5H2O] (5) have been investigated. Complexes 1 and 3 are supposed to have one type of copper centers in trigonal planar and tetrahedral environment, respectively. Complexes 2 and 4 are supposed to have two types of copper centers, one center having trigonal planar geometry and another center having tetrahedral geometry. The aim of the present work is to show how extended X-ray absorption fine structure (EXAFS) spectra of these complexes, having different types of coordination environment, can be analyzed to yield the coordination geometry around one type of copper centers present in complexes 1 and 3, and two types of copper centers present in complexes 2 and 4. The crystal structure of complex 5 is unavailable due to inability of growing its single crystals, and hence the coordination geometry of this complex has been determined from EXAFS. The structural parameters determined from the EXAFS spectra have been reported and the coordination geometry has been depicted for the metal centers present in all the five complexes. Also, the chemical shifts have been used to determine the oxidation state of copper in these complexes. The X-ray absorption near edge spectra features have also been correlated with the coordination geometry. Also, the presence of both three and four coordinated Cu(I) centers in complexes 2 and 4 has been suggested from a comparison of the intensity of the feature at 8984 eV with those of 1 and 3. Further, in case of complex 5, the high intensity of peak A at 8986.5 eV is found to correspond to the presence of Cl coordinated to the copper center.

SELECTION OF CITATIONS
SEARCH DETAIL
...