Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1234925, 2023.
Article in English | MEDLINE | ID: mdl-37900147

ABSTRACT

Aim: Wolfram Syndrome (WS) is a rare condition caused by mutations in Wfs1, with a poor prognosis and no cure. Mono-agonists targeting the incretin glucagon-like-peptide 1 (GLP-1) have demonstrated disease-modifying potential in pre-clinical and clinical settings. Dual agonists that target GLP-1 and glucose-dependent insulinotropic polypeptide (GIP-1) are reportedly more efficacious; hence, we evaluated the therapeutic potential of dual incretin agonism in a loss-of-function rat model of WS. Methods: Eight-month-old Wfs1 knock-out (KO) and wild-type control rats were continuously treated with either the dual agonist DA-CH5 or saline for four months. Glycemic profile, visual acuity and hearing sensitivity were longitudinally monitored pre-treatment, and then at 10.5 and 12 months. Pancreata and retina were harvested for immunohistological analysis. Results: DA-CH5 therapy reversed glucose intolerance in KO rats and provided lasting anti-diabetogenic protection. Treatment also reversed intra-islet alterations, including reduced endocrine islet area and ß-cell density, indicating its regenerative potential. Although no rescue effect was noted for hearing loss, visual acuity and retinal ganglion cell density were better preserved in DA-CH5-treated rats. Conclusion: We present preclinical evidence for the pleiotropic therapeutic effects of long-term dual incretin agonist treatment; effects were seen despite treatment beginning after symptom-onset, indicating reversal of disease progression. Dual incretins represent a promising therapeutic avenue for WS patients.


Subject(s)
Insulin-Secreting Cells , Wolfram Syndrome , Humans , Rats , Animals , Infant , Incretins/pharmacology , Wolfram Syndrome/drug therapy , Glucagon-Like Peptide 1/pharmacology , Gastric Inhibitory Polypeptide
3.
Genes (Basel) ; 14(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37107585

ABSTRACT

Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.


Subject(s)
Wolfram Syndrome , Rats , Animals , Wolfram Syndrome/genetics , Renin-Angiotensin System/genetics , Liraglutide/pharmacology , Receptors, Angiotensin/metabolism , Calmodulin-Binding Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Front Cell Dev Biol ; 10: 965382, 2022.
Article in English | MEDLINE | ID: mdl-36393849

ABSTRACT

Aging is a complex process characterized by several molecular and cellular imbalances. The composition and stability of the neuronal cytoskeleton is essential for the maintenance of homeostasis, especially in long neurites. Using human skin biopsies containing sensory axons from a cohort of healthy individuals, we investigate alterations in cytoskeletal content and sensory axon caliber during aging via quantitative immunostainings. Cytoskeletal components show an increase with aging in both sexes, while elevation in axon diameter is only evident in males. Transcriptomic data from aging males illustrate various patterns in gene expression during aging. Together, the data suggest gender-specific changes during aging in peripheral sensory axons, possibly influencing cytoskeletal functionality and axonal caliber. These changes may cumulatively increase susceptibility of aged individuals to neurodegenerative diseases.

5.
Front Neurosci ; 15: 656456, 2021.
Article in English | MEDLINE | ID: mdl-34776835

ABSTRACT

The pathogenesis of the fatal neurodegenerative condition amyotrophic lateral sclerosis (ALS) remains to be fully understood. Blood-brain barrier damage (BBBD) has been implicated as an exacerbating factor in several neurodegenerative conditions, including ALS. Therefore, this cross-sectional study used the novel D50 progression model to assess the clinical relevance of BBBD within a cohort of individuals with either ALS (n = 160) or ALS mimicking conditions (n = 31). Routine laboratory parameters in cerebrospinal fluid (CSF) and blood were measured, and the ratio of CSF to serum albumin levels (Qalb) was used as a proxy measure of BBBD. In the univariate analyses, Qalb levels correlated weakly with disease aggressiveness (as indicated by individual D50 values) and physical function (as measured by ALS Functional Rating Scale). However, after adjustment for cofactors in the elastic net regularization, only having limb-onset disease was associated with BBBD. The results reported here emphasize the clinical heterogeneity of ALS and the need for additional longitudinal and multi-modal studies to fully clarify the extent and effect of BBBD in ALS.

6.
Virology ; 561: 65-68, 2021 09.
Article in English | MEDLINE | ID: mdl-34157565

ABSTRACT

The global COVID-19 pandemic caused by SARS-CoV-2 predominantly affects the elderly. Differential expression of SARS-CoV-2 entry genes may underlie the variable susceptibility in different patient groups. Here, we examined the gene expression of key SARS-CoV-2 entry factors in mucosal biopsies to delineate the roles of age and existing chronic airway disease. A significant inverse correlation between ACE2 and age and a downregulation of NRP1 in patients with airway disease were noted. These results indicate that the interplay between various factors may influence susceptibility and the disease course.


Subject(s)
COVID-19/genetics , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Nasal Mucosa/metabolism , Nasal Mucosa/virology , SARS-CoV-2/physiology , Adolescent , Adult , Age Factors , Aged , Biomarkers , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Virus Internalization , Young Adult
7.
Front Neurol ; 12: 629332, 2021.
Article in English | MEDLINE | ID: mdl-34054686

ABSTRACT

Neuroinflammation significantly contributes to Amyotrophic Lateral Sclerosis (ALS) pathology. In lieu of this, reports of elevated chitinase levels in ALS are interesting, as they are established surrogate markers of a chronic inflammatory response. While post-mortem studies have indicated glial expression, the cellular sources for these moieties remain to be fully understood. Therefore, the objective of this pilot study was to examine whether the peripheral immune system also contributes to chitinase dysregulation in ALS. The temporal expression of CHIT1, CHI3L1, and CHI3L2 in non-polarized monocyte-derived macrophages (MoMas) from ALS patients and healthy controls (HCs) was examined. We demonstrate that while CHIT1 and CHI3L1 display similar temporal expression dynamics in both groups, profound between-group differences were noted for these targets at later time-points i.e., when cells were fully differentiated. CHIT1 and CHI3L1 expression were significantly higher in MoMas from ALS patients at both the transcriptomic and protein level, with CHI3L1 levels also being influenced by age. Conversely, CHI3L2 expression was not influenced by disease state, culture duration, or age. Here, we demonstrate for the first time, that in ALS, circulating immune cells have an intrinsically augmented potential for chitinase production that may propagate chronic neuroinflammation, and how the ageing immune system itself contributes to neurodegeneration.

8.
Front Neurosci ; 15: 651651, 2021.
Article in English | MEDLINE | ID: mdl-33889072

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder. As previous therapeutic trials in ALS have been severely hampered by patients' heterogeneity, the identification of biomarkers that reliably reflect disease progression represents a priority in ALS research. Here, we used the D50 disease progression model to investigate correlations between cerebrospinal fluid (CSF) neurofilament light chain (NfL) levels and disease aggressiveness. The D50 model quantifies individual disease trajectories for each ALS patient. The value D50 provides a unified measure of a patient's overall disease aggressiveness (defined as time taken in months to lose 50% of functionality). The relative D50 (rD50) reflects the individual disease covered and can be calculated for any time point in the disease course. We analyzed clinical data from a well-defined cohort of 156 patients with ALS. The concentration of NfL in CSF samples was measured at two different laboratories using the same procedure. Based on patients' individual D50 values, we defined subgroups with high (<20), intermediate (20-40), or low (>40) disease aggressiveness. NfL levels were compared between these subgroups via analysis of covariance, using an array of confounding factors: age, gender, clinical phenotype, frontotemporal dementia, rD50-derived disease phase, and analyzing laboratory. We found highly significant differences in NfL concentrations between all three D50 subgroups (p < 0.001), representing an increase of NfL levels with increasing disease aggressiveness. The conducted analysis of covariance showed that this correlation was independent of gender, disease phenotype, and phase; however, age, analyzing laboratory, and dementia significantly influenced NfL concentration. We could show that CSF NfL is independent of patients' disease covered at the time of sampling. The present study provides strong evidence for the potential of NfL to reflect disease aggressiveness in ALS and in addition proofed to remain at stable levels throughout the disease course. Implementation of CSF NfL as a potential read-out for future therapeutic trials in ALS is currently constrained by its demonstrated susceptibility to (pre-)analytical variations. Here we show that the D50 model enables the discovery of correlations between clinical characteristics and CSF analytes and can be recommended for future studies evaluating potential biomarkers.

9.
Neuroimage Clin ; 30: 102674, 2021.
Article in English | MEDLINE | ID: mdl-33901988

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by a high heterogeneity in patients' disease course. Patients with bulbar onset of symptoms (b-ALS) have a poorer prognosis than patients with limb onset (l-ALS). However, neuroimaging correlates of the assumed biological difference between b-ALS and l-ALS may have been obfuscated by patients' diversity in the disease course. We conducted Voxel-Based-Morphometry (VBM) and Tract-Based-Spatial-Statistics (TBSS) in a group of 76 ALS patients without clinically relevant cognitive deficits. The subgroups of 26 b-ALS and 52 l-ALS patients did not differ in terms of disease Phase or disease aggressiveness according to the D50 progression model. VBM analyses showed widespread ALS-related changes in grey and white matter, that were more pronounced for b-ALS. TBSS analyses revealed that b-ALS was predominantly characterized by frontal fractional anisotropy decreases. This demonstrates a higher degree of neurodegenerative burden for the group of b-ALS patients in comparison to l-ALS. Correspondingly, higher bulbar symptom burden was associated with right-temporal and inferior-frontal grey matter density decreases as well as fractional anisotropy decreases in inter-hemispheric and long association tracts. Contrasts between patients in Phase I and Phase II further revealed that b-ALS was characterized by an early cortical pathology and showed a spread only outside primary motor regions to frontal and temporal areas. In contrast, l-ALS showed ongoing structural integrity loss within primary motor-regions until Phase II. We therefore provide a strong rationale to treat both onset types of disease separately in ALS studies.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , White Matter , Amyotrophic Lateral Sclerosis/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , White Matter/diagnostic imaging
10.
Article in English | MEDLINE | ID: mdl-33576252

ABSTRACT

Objective: Levels of chitotriosidase (CHIT1) are increased in the cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis (ALS) patients reflecting microglial activation. Here, we determine the diagnostic and prognostic potential of CHIT1 for early symptomatic ALS. Methods: Overall, 275 patients from 8 European neurological centers were examined. We included ALS with <6 and >6 months from symptom onset, other motoneuron diseases (oMND), ALS mimics (DCon) and non-neurodegenerative controls (Con). CSF CHIT1 levels were analyzed for diagnostic power and association with progression and survival in comparison to the benchmark neurofilament. The 24-bp duplication polymorphism of CHIT1 was analyzed in a subset of patients (N = 65). Results: Homozygous CHIT1 duplication mutation carriers (9%) invariably had undetectable CSF CHIT1 levels, while heterozygous carriers had similar levels as patients with wildtype CHIT1 (p = 0.414). In both early and late symptomatic ALS CHIT1 levels was increased, did not correlate with patients' progression rates, and was higher in patients diagnosed with higher diagnostic certainty. Neurofilament levels correlated with CHIT1 levels and prevailed over CHIT1 regarding diagnostic performance. Both CHIT1 and neurofilaments were identified as independent predictors of survival in late but not early symptomatic ALS. Evidence is provided that CHIT1 predicts progression in El Escorial diagnostic category in the group of ALS cases with a short duration. Conclusions: CSF CHIT1 level may have additional value in the prognostication of ALS patients with a short history of symptoms classified in diagnostic categories of lower clinical certainty. To fully interpret apparently low CHIT1 levels knowledge of CHIT1 genotype is needed.


Subject(s)
Amyotrophic Lateral Sclerosis , Hexosaminidases , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Biomarkers , Disease Progression , Hexosaminidases/genetics , Humans , Neurofilament Proteins , Prognosis
11.
Hum Brain Mapp ; 42(3): 737-752, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33103324

ABSTRACT

Numerous neuroimaging studies in amyotrophic lateral sclerosis (ALS) have reported links between structural changes and clinical data; however phenotypic and disease course heterogeneity have occluded robust associations. The present study used the novel D50 model, which distinguishes between disease accumulation and aggressiveness, to probe correlations with measures of diffusion tensor imaging (DTI). DTI scans of 145 ALS patients and 69 controls were analyzed using tract-based-spatial-statistics of fractional anisotropy (FA), mean- (MD), radial (RD), and axial diffusivity (AD) maps. Intergroup contrasts were calculated between patients and controls, and between ALS subgroups: based on (a) the individual disease covered (Phase I vs. II) or b) patients' disease aggressiveness (D50 value). Regression analyses were used to probe correlations with model-derived parameters. Case-control comparisons revealed widespread ALS-related white matter pathology with decreased FA and increased MD/RD. These affected pathways showed also correlations with the accumulated disease for increased MD/RD, driven by the subgroup of Phase I patients. No significant differences were noted between patients in Phase I and II for any of the contrasts. Patients with high disease aggressiveness (D50 < 30 months) displayed increased AD/MD in bifrontal and biparietal pathways, which was corroborated by significant voxel-wise regressions with D50. Application of the D50 model revealed associations between DTI measures and ALS pathology in Phase I, representing individual disease accumulation early in disease. Patients' overall disease aggressiveness correlated robustly with the extent of DTI changes. We recommend the D50 model for studies developing/validating neuroimaging or other biomarkers for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Diffusion Tensor Imaging , Disease Progression , Models, Neurological , White Matter/pathology , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/physiopathology , Female , Humans , Male , Middle Aged , White Matter/diagnostic imaging
12.
J Clin Med ; 9(9)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899481

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, the management of which requires the continuous provision of multidisciplinary therapies. Owing to the novel coronavirus disease (COVID-19) pandemic, regular contact with ALS patients at our center was severely restricted and patient care was at risk by delay of supportive therapies. We established a triage system based on the D50 disease progression model and were thus able to identify a prospective cohort with high disease aggressiveness (D50 < 30). Thirty-seven patients with highly aggressive disease were actively offered follow-up, either via telephone or on-site, depending on their disease-specific needs and abilities. We describe here the procedures, obstacles, and results of these prescient efforts during the restrictions caused by COVID-19 in the period between March and June 2020. In conclusion, four patients with highly aggressive disease were initiated with non-invasive ventilation and two received a gastrostomy. We could show that a comparable amount of advanced care was induced in a retrospective cohort within a similar time period one year prior to the COVID-19 outbreak. Our workflow to identify high-risk patients via D50 model metrics can be easily implemented and integrated within existing centers. It helped to maintain a high quality of advanced care planning for our ALS patients.

13.
Front Neurol ; 11: 377, 2020.
Article in English | MEDLINE | ID: mdl-32536900

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition, most widely characterized by the selective vulnerability of motor neurons and the poor life expectancy of afflicted patients. Limited disease-modifying therapies currently exist, which only further attests to the substantial heterogeneity associated with this disease. In addition to established prognostic factors like genetic background, site of onset, and age at onset, wide consensus on the role of neuroinflammation as a disease exacerbator and driver has been established. In lieu of this, the emerging literature on chitinases in ALS is particularly intriguing. Individual groups have reported substantially elevated chitotriosidase (CHIT1), chitinase-3-like-1 (CHI3L1), and chitinase-3-like-2 (CHI3L2) levels in the cerebrospinal, motor cortex, and spinal cord of ALS patients with multiple-and often conflicting-lines of evidence hinting at possible links to disease severity and progression. This mini-review, while not exhaustive, will aim to discuss current evidence on the involvement of key chitinases in ALS within the wider framework of other neurodegenerative conditions. Implications for understanding disease etiology, developing immunomodulatory therapies and biomarkers, and other translational opportunities will be considered.

14.
Health Qual Life Outcomes ; 18(1): 117, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32357946

ABSTRACT

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disorder with limited robust disease-modifying therapies presently available. While several treatments are aimed at improving health-related quality of life (HRQoL), longitudinal data on how QoL changes across the disease course are rare. OBJECTIVES: To explore longitudinal changes in emotional well-being and HRQoL in ALS. METHODS: Of the 161 subjects initially recruited, 39 received 2 subsequent follow-up assessments at 6 and 12 months after baseline. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess physical impairment. HRQoL was assessed using the ALS Assessment Questionnaire (ALSAQ-40). The D50 disease progression model was applied to explore longitudinal changes in HRQoL. RESULTS: Patients were primarily in the early semi-stable and early progressive model-derived disease phases. Non-linear correlation analyses showed that the ALSAQ-40 summary index and emotional well-being subdomain behaved differently across disease phases, indicating that the response shift occurs early in disease. Both the ALSFRS-R and ALSAQ-40 significantly declined at 6- and 12-monthly follow-ups. CONCLUSION: ALSAQ-40 summary index and emotional well-being change comparably over both actual time and model-derived phases, indicating that the D50 model enables pseudo-longitudinal interpretations of cross-sectional data in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Disease Progression , Quality of Life , Aged , Amyotrophic Lateral Sclerosis/psychology , Cross-Sectional Studies , Disability Evaluation , Female , Humans , Male , Middle Aged , Physical Functional Performance , Surveys and Questionnaires
15.
Neuroimage Clin ; 25: 102094, 2020.
Article in English | MEDLINE | ID: mdl-31896467

ABSTRACT

Therapeutic management and research in Amyotrophic Laterals Sclerosis (ALS) have been limited by the substantial heterogeneity in progression and anatomical spread that are endemic of the disease. Neuroimaging biomarkers represent powerful additions to the current monitoring repertoire but have yielded inconsistent associations with clinical scores like the ALS functional rating scale. The D50 disease progression model was developed to address limitations with clinical indices and the difficulty obtaining longitudinal data in ALS. It yields overall disease aggressiveness as time taken to reach halved functionality (D50); individual disease covered in distinct phases; and calculated functional state and calculated functional loss as acute descriptors of local disease activity. It greatly reduces the noise of the ALS functional rating scale and allows the comparison of highly heterogeneous disease and progression subtypes. In this study, we performed Voxel-Based Morphometry for 85 patients with ALS (60.1 ± 11.5 years, 36 female) and 62 healthy controls. Group-wise comparisons were performed separately for gray matter and white matter using ANCOVA testing with threshold-free cluster enhancement. ALS-related widespread gray and white matter density decreases were observed in the bilateral frontal and temporal lobes (p < 0.001, family-wise error corrected). We observed a progressive spread of structural alterations along the D50-derived phases, that were primarily located in frontal, temporal and occipital gray matter areas, as well as in supratentorial neuronal projections (p < 0.001 family-wise error corrected). ALS patients with higher overall disease aggressiveness (D50 < 30 months) showed a distinct pattern of supratentorial white matter density decreases relative to patients with lower aggressiveness; no significant differences were observed for gray matter density (p < 0.001 family-wise error corrected). The application of the D50 disease progression model separates measures of disease aggressiveness from disease accumulation. It revealed a strong correlation between disease phases and in-vivo measures of cerebral structural integrity. This study underscores the proposed corticofugal spread of cerebral pathology in ALS. We recommend application of the D50 model in studies linking clinical data with neuroimaging correlates.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Progression , Gray Matter , Magnetic Resonance Imaging/methods , Models, Neurological , Neuroimaging/methods , White Matter , Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Cross-Sectional Studies , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Male , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology
16.
J Neuroinflammation ; 16(1): 94, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068198

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor and non-motor symptoms. There is increasing evidence that PD pathology is accompanied by an inflammatory response. This is highly relevant for understanding disease progression and the development of novel neuroprotective therapies. OBJECTIVE: Assessing potential dysregulation of a panel of inflammatory mediators in the peripheral blood mononuclear cells (PBMCs) and plasma of PD patients and in the context of clinical outcome metrics. METHODS: We performed a screening of selected cell-surface chemokine receptors and adhesion molecules in PBMCs from PD patients and age-matched healthy controls in a flow cytometry-based assay. ELISA was used to quantify VCAM1 levels in the plasma of PD patients. Lymphocytic chemotactic ability was assessed using a modified Boyden chamber assay. RESULTS: VLA4 expression was significantly downregulated on CD3+ T cells, CD56+ NK cells, and CD3+/CD56+ NK-T cells from PD patients; further, an increase of the soluble VLA4 ligand VCAM1 in patient plasma was noted. sVCAM1 in PD patients was even higher than reported for patients with multiple sclerosis, neuromyelitis optica, and rheumatoid arthritis. sVCAM1 levels correlated with the disease stage (Hoehn and Yahr scale) and motor impairment. Chemoattraction with SDF-1α revealed impaired motility of lymphocytes from PD patients relative to controls. CONCLUSION: Our data provides evidence for a functional dysregulation of the sVCAM1-VLA4 axis in PD. Further studies evaluating the therapeutic potential of this axis are warranted.


Subject(s)
Parkinson Disease/blood , Vascular Cell Adhesion Molecule-1/blood , Aged , Biomarkers/blood , Female , Humans , Integrin alpha4beta1/blood , Leukocytes, Mononuclear/metabolism , Male , Middle Aged
17.
Front Aging Neurosci ; 11: 5, 2019.
Article in English | MEDLINE | ID: mdl-30740050

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a multisystemic neurodegenerative disorder. Given that peripheral blood mononuclear cells (PBMCs) serve as a "window to the central nervous system" we aimed to answer whether endoplasmic reticulum (ER) stress in ALS-PBMCs is related to disease aggressiveness. We studied ER stress in the PBMCs of 49 patients with ALS and 31 age- and sex-matched healthy controls. The expression of a main ER stress marker, activating transcription factor 6 (ATF6), was significantly higher in ALS compared to controls, but did not correlate with age, disease severity, disease duration and disease progression rate. When ATF6 expression levels were plotted against relative D50 (rD50)-derived disease phases derived from the D50 ALS model, two distinct clusters of patients were observed: cluster 1, with progressively increasing ATF6 expression levels and cluster 2, which demonstrated stable ATF6 expression over the disease course. Individuals in the two clusters did not significantly differ in terms of ALS Functional Rating Scale-Revised (ALSFRS-R), disease aggressiveness, disease duration and subtype. However, patients with the increasing ATF6 level were significantly younger, indicating that aging processes might be related to ER stress in ALS. Our data suggest that the reaction to ER stress during disease course may be compromised in older patients with ALS.

18.
J Neurol Sci ; 397: 92-95, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30597420

ABSTRACT

OBJECTIVES: To determine the impact of disease progression on health-related quality of life in amyotrophic lateral sclerosis (ALS). METHODS: A total of 161 patients with ALS were enrolled. Assessments included the revised ALS Functional Rating Scale and the ALS Assessment Questionnaire (ALSAQ-40). Data analysis comprised linear regression and multivariate analyses. RESULTS: ALSFRS-R score (ß = 0.75, p < 0.001), depression (ß = 0.08, p < 0.001), pain (ß = 0.07, p < 0.001), hopelessness (ß = 0.07, p = 0.001), and progression rate (ß = 0.02, p = 0.02) explained 76% of the ALSAQ-40 summary index variance. Progression rate alone explained 7% of the ALSAQ-40 summary index variance. The subdomains of emotional well-being, followed by ADL, and finally communication and eating were most strongly influenced by progression rate. CONCLUSION: Our study demonstrates the importance of physical health for emotional well-being. In particular, slower disease progression is associated with higher levels of emotional well-being in ALS.


Subject(s)
Activities of Daily Living/psychology , Amyotrophic Lateral Sclerosis/physiopathology , Quality of Life/psychology , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/psychology , Disease Progression , Emotions/physiology , Female , Health Status , Humans , Male , Mental Health , Middle Aged , Severity of Illness Index
19.
Front Neurol ; 9: 1055, 2018.
Article in English | MEDLINE | ID: mdl-30564187

ABSTRACT

Neuroimaging in Amyotrophic Lateral Sclerosis (ALS) has steadily evolved from an academic exercise to a powerful clinical tool for detecting and following pathological change. Nevertheless, significant challenges need to be addressed for the translation of neuroimaging as a robust outcome-metric and biomarker in quality-of-care assessments and pharmaceutical trials. Studies have been limited by small sample sizes, poor replication, incomplete patient characterization, and substantial differences in data collection and processing. This has been further exacerbated by the substantial heterogeneity associated with ALS. Multi-center transnational collaborations are needed to address these methodological limitations and achieve representation of rare phenotypes. This review will use the example of the Neuroimaging Society in ALS (NiSALS) to discuss the set-up of a multi-center data sharing ecosystem and the flow of information between various stakeholders. NiSALS' founding objective was to establish best practices for the acquisition and processing of MRI data and establish a structure that allows continuous data sharing and therefore augments the ability to fully describe patients. The practical challenges associated with such a system, including quality control, legal, ethical, and logistical constraints, will be discussed, as will be recommendations for future collaborative endeavors. We posit that "global cohorts" of well-characterized sub-populations within the disease spectrum are needed to fully understand the complex interplay between neuroimaging and other clinical metrics used to study ALS.

20.
J Cell Commun Signal ; 12(4): 731-735, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30043327

ABSTRACT

The monoamine neurotransmitter, 5-Hydroxytryptamine or serotonin, is derived from tryptophan and synthesized both centrally and systemically. Fourteen structurally and functionally distinct receptor subtypes have been identified for serotonin, each of which mediates the neurotransmitter's effects through a range of downstream signaling molecules and effectors. Although it is most frequently described for its role in the etiology of neuropsychiatric and mood disorders, serotonin has been implicated in a slew of fundamental physiological processes, including apoptosis, mitochondrial biogenesis, cell proliferation and migration. Its roles as the neurotransmitter have also emerged in pathogenic conditions ranging from anorexia nervosa to cancer. This has necessitated the understanding of the signaling mechanisms underlying the serotonergic system, which led us to construct a consolidative pathway map, which will provide as a resource for future biomedical investigation on this pathway. Using a set of stringent NetPath annotation criteria, we manually curated molecular reactions associated with serotonin and its receptors from publicly available literature; the reaction categories included molecular associations, activation/inhibition, post-translation modification, transport, and gene regulation at transcription and translational level. We identified 90 molecules in serotonin-serotonin receptor pathway. We submitted the curated data to NetPath, a publicly available database of human signaling pathways, in order to enable the wider scientific community to readily access data and contribute further to this pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...