Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 8250, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26394692

ABSTRACT

Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-ß. Knockout and genetic studies have linked IDE to Alzheimer's disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.


Subject(s)
Hydroxamic Acids/chemical synthesis , Insulysin/antagonists & inhibitors , Triazoles/chemical synthesis , Animals , Caco-2 Cells , Catalytic Domain , Diabetes Mellitus/drug therapy , Drug Evaluation, Preclinical , Glucose Tolerance Test , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver , Molecular Targeted Therapy , Random Allocation , Structure-Activity Relationship , Triazoles/pharmacology , Triazoles/therapeutic use
2.
Eur J Med Chem ; 90: 547-67, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25489670

ABSTRACT

Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.


Subject(s)
Carbamates/pharmacology , Carboxylic Acids/chemistry , Enzyme Inhibitors/pharmacology , Imidazoles/chemistry , Insulysin/antagonists & inhibitors , Insulysin/metabolism , Oxadiazoles/pharmacology , Carbamates/chemical synthesis , Carbamates/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Structure-Activity Relationship
3.
Eur J Med Chem ; 79: 184-93, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24735644

ABSTRACT

Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels.


Subject(s)
Acetates/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Imidazoles/chemistry , Insulysin/metabolism , Small Molecule Libraries/pharmacology , Acetates/chemical synthesis , Acetates/chemistry , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Drug , Humans , Hydrolysis , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...