Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37495887

ABSTRACT

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Subject(s)
Depression , Tandem Mass Spectrometry , Humans , Depression/metabolism , Diet , Metabolome/genetics , Vitamin A/metabolism , Hippurates , Metabolomics/methods
2.
Clin Chem Lab Med ; 60(8): 1202-1210, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35635785

ABSTRACT

OBJECTIVES: A carrier prototype by Aerocom® (Schwäbisch Gmünd, Germany) for pneumatic tube systems (PTS) is able to transport 9 blood tubes which are automatically fixed by closing the lid. In this study, we examined the influence of the transport on blood sample quality using the carrier prototype comparing to courier transport and a conventional carrier (AD160, Aerocom®). METHODS: Triplicate blood samples sets (1 lithium heparin, 1 EDTA, 1 sodium citrate) of 35 probands were split among the transportation methods: 1. courier, 2. conventional carrier, and 3. carrier prototype. After transport 51 measurands from clinical chemistry, hematology and coagulation were measured and compared. RESULTS: Overall, 49 of the investigated 51 measurands showed a good concordance among the three transport types, especially between the conventional carrier and the carrier prototype. Focusing on well-known hemolysis sensitive measurands, potassium showed no statistically significant differences. However, between courier and both carrier types lactate dehydrogenase (LDH) and free hemoglobin (fHb) showed statistically significant shifts, whereas the clinical impact of the identified differences was neglectable. The median concentration of fHb, for example, was 0.29 g/L (18 µmol/L), 0.31 g/L (19 µmol/L) and 0.32 g/L (20 µmol/L) for courier transport, conventional carrier and carrier prototype, respectively. These differences cannot be resolved analytically since the minimal difference (MD) for fHb is 0.052 g/L (3.23 µmol/L), at this concentration. CONCLUSIONS: The carrier prototype by Aerocom® is suitable for transportation of diagnostic blood samples. The overall workflow is improved by decreasing hands-on-time on the ward and laboratory while minimizing the risk of incorrectly packed carriers.


Subject(s)
Blood Specimen Collection , Hemolysis , Blood Coagulation , Hemoglobins/analysis , Humans , L-Lactate Dehydrogenase , Potassium
3.
Clin Chem Lab Med ; 60(7): 1031-1038, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35451300

ABSTRACT

OBJECTIVES: Thyroid-stimulating hormone (TSH) is the routine primary screening test to assess thyroid function and rapid measurement of TSH levels is highly desirable especially in emergency situations. In the present study, we compared the analytical performance of a commercially available point-of-care test (AFIAS-1) and five laboratory-based systems. METHODS: Left over material of 60 patient plasma samples was collected from patient care and used in the respective assay. For statistical analysis of the produced data Bland-Altman and Passing-Bablok regression analysis were applied. RESULTS: Good correlation (r=0.982 or higher) was found between all devices. Slopes from regression analysis ranged from 0.972 (95% CI: 0.927-1.013) to 1.276 (95% CI: 1.210-1.315). Among the compared devices, imprecision was high in terms of coefficient of variation (CV=10.3%) for low TSH concentrations and lower (CV=7.3%) for high TSH concentrations. Independent of the method used, we demonstrated a poor standardization of TSH assays, which might impact clinical diagnosis e.g. of hyperthyreosis. CONCLUSIONS: This study shows that the point-of-care (POC) test AFIAS-1 can serve as an alternative to laboratory-based assays. In addition the data imply that better standardization of TSH measurements is needed.


Subject(s)
Point-of-Care Testing , Thyrotropin , Humans , Reference Standards
4.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35050683

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Subject(s)
Diabetes Mellitus, Type 2 , White Matter , Aged , Brain/pathology , Diabetes Mellitus, Type 2/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Metabolome , Middle Aged , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...