Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(50): 47573-47584, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144049

ABSTRACT

Amaranthus (family Amaranthaceae) is a potentially nutritious pseudocereal also known as a functional food owing to its high nutritional quality grains especially rich in essential amino acids. Emerging study, however, unambiguously indicates that apart from essential nutrients like protein, other phytochemicals present in amaranth seeds provide excellent health benefits. Squalene is one such phytonutrient found in Amaranthus seeds, which is also its largest vegetal source. In this research work, GC-MS and NMR spectroscopy-based metabolomics have been utilized for the compositional analysis of Amaranthus seeds coupled with a multivariate data set. Investigation of nonpolar and polar seed extracts of six different cultivars of amaranth identified 47 primary and secondary metabolites. One-way ANOVA showed significant quantitative metabolic variations in different cultivars of amaranth. Multivariate principal component analysis of both the GC-MS and NMR analyzed data broadly classified in two groups showed significant variations in the polar (lysine, arginine, GABA, and myoinositol) and nonpolar (squalene, tryptophan, and alkylated phenols, which are potential nutraceutical agents) metabolites. The squalene content estimated using HPLC varied significantly (1.61 to 4.72 mg g-1 seed dry weight) among six different cultivars. Positive correlations were found among the cellular antioxidant activity and squalene content. Cultivar AM-3 having the maximum squalene content showed the highest antioxidant activity evaluated on the cellular level over human embryonic kidney cells, clearly revealing potent intercellular reactive oxygen species scavenging capacity and strong membrane lipid peroxidation inhibition potential. Oxidative stress markers such as MDA, SOD, GSH, and CAT levels in cells further corroborated the research work. The study also indicated high concentrations of lysine (80.49 mg g-1 dry seeds) in AM-2, squalene (0.47% by weight) in AM-3, and 2,4-di-tert-butyl phenol (18.64% peak area) and myoinositol (79.07 mg g-1 dry seeds) in AM-5. This novel comparative metabolomic study successfully profiles the nutrient composition of amaranth cultivars and provides the opportunity for the development of nutraceuticals and natural antioxidants from this functional food.

2.
Environ Pollut ; 322: 121163, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736817

ABSTRACT

Chromium (Cr) is a naturally occurring, carcinogenic heavy metal that has become a pressing concern in recent decades for environmentalists. Due to high anthropogenic activities, the concentration of Cr has crossed the environmental threshold levels and consequently contaminated soil and water. The high solubility of Cr ions in the groundwater results in its high uptake by the plants leading to phytotoxicity and yield loss. The dearth of efficient and cost-effective treatment methods has resulted in massive chromium pollution. However, some phytoaccumulators capable of accumulating Cr in high amounts in their shoots and then performing their metabolic activity typically have been identified. Chromium bioremediation using phytoaccumulators is very contemplative due to its eco-friendly and cost-effective outcome. These accumulators possess several mechanisms, such as biosorption, reduction, efflux, or bioaccumulation, naturally or acquired to counter the toxicity of chromium. This review focuses on the detoxification mechanism of Cr by the phytoaccumulator species, their responses against Cr toxicity, and the scope for their application in bioremediation. Besides, Cr bioavailability, uptake, distribution, impairment of redox homeostasis, oxidative stress, and phytotoxicity imposed on the plants are also summarized. Further, the knowledge gap and prospects are also discussed to fill these gaps and overcome the problem associated with the real-time applicability of phytoaccumulator-based bioremediation.


Subject(s)
Chromium , Soil Pollutants , Chromium/analysis , Soil , Soil Pollutants/analysis , Biodegradation, Environmental , Plants/metabolism , Homeostasis
3.
Int J Pharm ; 635: 122735, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36803928

ABSTRACT

The present research aims to synthesize the capecitabine-loaded core-shell nanoparticles of acrylamide-grafted melanin and itaconic acid-grafted psyllium (Cap@AAM-g-ML/IA-g-Psy-NPs) to deliver the drug to the targeted colonic area, enhancing their anti-cancer activity. The drug release behavior of Cap@AAM-g-ML/IA-g-Psy-NPs was studied at several biological pH in which maximum drug release (95 %) was observed at pH 7.2. The drug release kinetic data was in accordance with the first-order (R2 = 0.9706) kinetic model. The cytotoxicity of Cap@AAM-g-ML/IA-g-Psy-NPs was investigated on HCT-15 cell line and Cap@AAM-g-ML/IA-g-Psy-NPs demonstrated outstanding toxicity towards HCT-15 cell line. In-vivo study on DMH-induced colon cancer rat model also exhibited that Cap@AAM-g-ML/IA-g-Psy-NPs enhanced anticancer activity against cancer cells as compared to capecitabine. Histology studies of heart, liver and kidney cells indicate that inflation due to cancer induction by DMH is significantly reduced when treated with Cap@AAM-g-ML/IA-g-Psy-NPs. Thus, the present study procures a worthwhile and nominal approach toward the synthesis of Cap@AAM-g-ML/IA-g-Psy-NPs for anticancer applications.


Subject(s)
Nanoparticles , Psyllium , Rats , Animals , Capecitabine , Drug Carriers , Melanins , Acrylamide , Nanoparticles/therapeutic use , Drug Liberation
4.
Int J Biol Macromol ; 218: 82-93, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35841963

ABSTRACT

Diabetes mellitus has become a major public health concern all over the world. Vildagliptin is one of the antidiabeticdrug that can overcome the existing problem of this prevalent disease. Present study aims to synthesize and investigate the role of vildagliptin-loaded core-shell nanoparticle of grafted psyllium and alginate (VG@P/A-NPs) in anti-diabetes application. FTIR, SEM, XRD, 13CNMR and zeta analyzer were used for characterization of the core-shell nanoparticles (VG@P/A-NPs). The synthesized acrylamide-grafted-psyllium was also optimized through varying grafting parameters such as acrylamide and ceric ammonium nitrate (CAN) concentration, time and temperature to obtain the maximum yield of acrylamide-grafted-psyllium. Rheological analysis of pure psyllium, grafted psyllium and alginate were also performed. For biological studies, the first cytotoxicity of grafted psyllium and VG@P/A-NPs were examined on human lung adenocarcinoma cell line A549 in which it was observed that VG@P/A-NPs did not exhibited any toxicity. The antidiabetic potential of VG@P/A-NPs was investigated by glucose uptake assay, using TNF-α induced insulin resistance skeletal cell model using mouse muscle L6 cell line. The insulin signaling impaired cell line displayed a highly significant (p < 0.0001) dose-dependent increase in glucose uptake after treatment with increasing doses of VG@P/A-NPs.The drug release behavior of VG@P/A-NPs was examined at various pH and the highest drug release (98 %) was obtained at pH (7.4). The drug release kinetic data was following the Higuchi (R2 = 0.9848) kinetic model, suggesting the release of drug from vildagliptin-loaded grafted psyllium-alginate core-shell nanoparticles (VG@P/A-NPs) as a square root of time-dependent process and diffusion controlled. This study provides an economical and environment-friendly approach towards the synthesis of VG@P/A-NPs with antidiabetes applications.


Subject(s)
Diabetes Mellitus , Nanoparticles , Psyllium , Acrylamide/chemistry , Alginates/chemistry , Animals , Drug Carriers/chemistry , Glucose , Humans , Mice , Nanoparticles/chemistry , Psyllium/chemistry , Vildagliptin
5.
Med Sci (Basel) ; 10(1)2022 03 04.
Article in English | MEDLINE | ID: mdl-35323216

ABSTRACT

Anogeissus acuminata is used to treat wounds, diarrhoea, dysentery, and skin ailments. However, its hepatoprotective effect against ethanol-induced liver damage is yet to be reported. The phenolic-enriched ethyl acetate fraction of Anogeissus acuminata (AAE) was evaluated for hepatoprotective activity against ethanol-induced liver toxicity in rats. The intoxicated animals were treated with a phenolic-rich fraction of Anogeissus acuminata (AAE) (100 and 200 mg/kg) and silymarin (100 mg/kg). The antioxidant activity of AAE was analysed. Biochemical markers (ALT, AST, ALP, GGT, and TBL) for liver injury in ethanol-administered animals resulted in higher levels of key serum biochemical injury markers, as evidenced by increased levels of ALT (127.24 ± 3.95), AST (189.54 ± 7.56), ALP (263.88 ± 12.96), GGT (91.65 ± 3.96), and TBL (2.85 ± 0.12) compared to Group I ALT (38.67 ± 3.84), AST (64.45 ± 5.97), GGT (38.67 ± 3.84), and TBL (0.53 ± 064) (p < 0.05). AAE administration decreased serum biochemical liver injury markers as manifested in Group III animals' ALT (79.56 ± 5.16), AST (151.76 ± 6.16), ALP (184.67 ± 10.12), GGT (68.24 ± 4.05), TBL (1.66 ± 0.082) (p < 0.05), and Group IV ALT (55.54 ± 4.35), AST (78.79 ± 4.88), ALP (81.96 ± 9.43), GGT (47.32 ± 2.95), TBL (0.74 ± 0.075) (p < 0.05). Group IV exhibited the most significant reduction in serum biochemical markers as compared to Group III (p < 0.05) and close to silymarin-treated Group V ALT (44.42 ± 3.15), AST (74.45 ± 5.75), ALP (67.32 ± 9.14), GGT (42.43 ± 2.54), TBL (0.634 ± 0.077). Gene expression indices and histoarchitecture were evaluated to demonstrate the potential of AAE. The bioactive fraction of Anogeissus acuminata was rich in phenolics and flavonoid content. GC−MS analysis identified gallic acid, palmitic acid, cis-10-heptadecenoic acid, 9-octadecenoic acid, epigallocatechin, 2,5-dihydroxyacetophenone, and catechin. Oral administration of AAE (100 and 200 mg/kg) lowered the elevated levels of the biochemical markers and interleukin, and enhanced the level of enzymatic antioxidant. It also downregulated the expression level of proapoptotic genes and upregulated the expression level of the antiapoptotic gene along with improved liver histopathology.


Subject(s)
Chemical and Drug Induced Liver Injury , Silymarin , Terminalia , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Ethanol , Phenols/pharmacology , Phenols/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/metabolism , Rats , Silymarin/pharmacology , Silymarin/therapeutic use , Terminalia/metabolism
6.
Physiol Mol Biol Plants ; 26(1): 63-81, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32158121

ABSTRACT

In the present study the potentials of aqueous extracts of the two plants, neem (Azadirachta indica) and Tulsi (Ocimum sanctum) were examined in alleviating arsenic toxicity in rice (Oryza sativa L.) plants grown in hydroponics. Seedlings of rice grown for 8 days in nutrient solution containing 50 µM sodium arsenite showed decline in growth, reduced biomass, altered membrane permeability and increased production of superoxide anion (O2 ·-), H2O2 and hydroxyl radicals (·OH). Increased lipid peroxidation marked by elevated TBARS (thiobarbituric acid reactive substances) level, increased protein carbonylation, alterated levels of ascorbate, glutathione and increased activities of enzymes SOD (superoxide dismutase), CAT (catalase), APX (ascorbate peroxidase) and GPX (glutathione peroxidase) were noted in the seedlings on As treatment. Exogenously added leaf aqueous extracts of Azadirachta indica (0.75 mg mL-1, w/v) and Ocimum sanctum (0.87 mg mL-1, w/v) in the growth medium considerably alleviated As toxicity effects in the seedlings, marked by reduced As uptake, restoration of membrane integrity, reduced production of ROS, lowering oxidative damage and restoring the levels of ascorbate, glutathione and activity levels of antioxidative enzymes. Arsenic uptake in the seedlings declined by 72.5% in roots and 72.8% in shoots, when A. indica extract was present in the As treatment medium whereas with O. sanctum extract, the uptake declined by 67.2% in roots and 70.01% in shoots. Results suggest that both A. indica and O. sanctum aqueous extracts have potentials to alleviate arsenic toxicity in rice plants and that A. indica can serve as better As toxicity alleviator compared to O. sanctum.

7.
Physiol Plant ; 168(2): 511-525, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31916586

ABSTRACT

Plants often face a variety of abiotic stresses, which affects them negatively and lead to yield loss. The antioxidant system efficiently removes excessive reactive oxygen species and maintains redox homeostasis in plants. With better understanding of these protective mechanisms, recently the concept of hydrogen sulfide (H2 S) and its role in cell signaling has become the center of attention. H2 S has been recognized as a third gasotransmitter and a potent regulator of growth and development processes such as germination, maturation, senescence and defense mechanism in plants. Because of its gaseous nature, H2 S can diffuse to different part of the cells and balance the antioxidant pools by supplying sulfur to cells. H2 S showed tolerance against a plethora of adverse environmental conditions like drought, salt, high temperature, cold, heavy metals and flood via changing in level of osmolytes, malonaldialdehyde, Na+ /K+ uptake, activities of H2 S biosynthesis and antioxidative enzymes. It also promotes cross adaptation through persulfidation. H2 S along with calcium, methylglyoxal and nitric oxide, and their cross talk induces the expression of mitogen activated protein kinases as well as other genes in response to stress. Therefore, it is sensible to evaluate and explore the stress responsive genes involved in H2 S regulated homeostasis and stress tolerance. The current article is aimed to summarize the recent updates on H2 S-mediated gene regulation in special reference to abiotic stress tolerance mechanism, and cross adaptation in plants. Moreover, new insights into the H2 S-associated signal transduction pathway have also been explored.


Subject(s)
Gene Expression Regulation, Plant , Hydrogen Sulfide/metabolism , Plant Physiological Phenomena , Signal Transduction , Stress, Physiological , Plants , Reactive Oxygen Species
8.
Water Sci Technol ; 80(4): 659-664, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31661445

ABSTRACT

Low intensity ultrasonication (US) was applied to stimulate the biological activities in anaerobic digestion (AD) process. The enhancement in methane production was used to investigate the sono-biostimulation effects on the process performance. The 32% higher CH4 production was observed over control at best US intensity and irradiation time of 0.0028 W/mL and 120 s, respectively. The sono-biostimulation effects in terms of higher CH4 generation over control lasted for 45 h. The increase in the concentration of NH4 +-N and K+ considered the indication of cell lysis under applied US conditions. At best US intensity and irradiation time, the NH4 +-N and K+ fraction in the medium remained similar as of control, which indicated that no cell lysis occurred. The preliminary findings of the study showed that low intensity US can be a promising solution to enhance the process efficiency in terms of higher methane production with minimal energy requirement.


Subject(s)
Methane , Sewage , Anaerobiosis
9.
J Pharmacopuncture ; 20(2): 93-99, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30087785

ABSTRACT

OBJECTIVES: Selaginella bryopteris L. (family: Selaginaceae), is often used in traditional Indian systems of medicine for the prevention and cure of several disorders and for the treatment of patient with spermatorrhoea, venereal disease, constipation, colitis, urinary tract infections, fever, epilepsy, leucorrhoea, beri-beri and cancer. It is also used as a strength tonic. This study aimed to evaluate the mechanisms underlying the anti-inflammatory effects of topically administered aqueous, polar and non-polar methanolic fractions (10 mg/20 µL) of Selaginella bryopteris. METHODS: An acute oral toxicity study of Selaginella bryopteris at doses from 250 to 2,000 mg/kg body weight (bw) was performed. Aqueous, polar and non-polar methanolic extracts (10 mg/20 µL) applied topically for 5 days were evaluated for their anti-inflammatory effects against 12-tetra-O-decanoyl phorbol acetate (TPA)-induced inflammation by using the redness in the ear, the ear's weight (edema), oxidative stress parameters, such as lipid-peroxide (LPO) and nitric oxide (NO), and the pro-inflammatory cytokines involved in inflammation, such as tumour necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6. Indomethacine (0.5 mg/20 µL) was used for the positive control. RESULTS: Selaginella bryopteris produced no mortalities when administered orally at doses from 250 to 2,000 mg/kg bw. Topical treatment with the non-polar methanolic fraction (10 mg/20 αL) significantly suppressed redness (2.4 ± 0.5) and edema (30.4 ± 1) and effectively reduced the LPO level (32.3 ± 3.3). The NO level was (8.07 ± 0.55), and the TNF-α, IL-1ß, and IL-6 levels were decreased to 69.6 ± 15.5, 7.7 ± 4.8 and 82.6 ± 5.9, respectively. CONCLUSION: This study demonstrated for the first time the mechanisms underlying the anti-inflammatory effect of medicinal plants like Selaginella bryopteris and quantified the pharmacological interactions between them. The present study showed this herbal product to be a promising anti-inflammatory phytomedicine for the treatment of patients with inflammatory skin diseases.

10.
Protoplasma ; 252(4): 959-75, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25413289

ABSTRACT

The present study was undertaken to examine the possible roles of calcium (Ca(2+)) and silica (Si) in protection against oxidative damage due to Cd(2+) toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Rice seedlings raised for 12 days in hydroponics containing Cd(NO3)2 (75 µM) showed reduced growth; increase in the level of reactive oxygen species (ROS) (O2 (·-) and H2O2), thiobarbituric acid reactive substances (TBARSs) and protein carbonylation; and increase in the activity of antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) compared to untreated controls. Exogenously added Ca(2+) (2 mM) and Si (200 µM) significantly alleviated negative effect of Cd(2+) by restoration of growth of the seedlings, suppression of Cd(2+) uptake and restoration of root plasma membrane integrity. The levels of O2 (·-), H2O2, lipid peroxidation and protein carbonyls were much lower when Ca(2+) and Si were added in the growth medium along with Cd(2+) as compared to Cd-alone-treated seedlings. Ca(2+) and Si lowered Cd-induced increase in SOD, GPX and APX activities while they elevated Cd-induced decline in CAT activity. Using histochemical staining of O2 (·-) and H2O2 in leaf tissues, it was further confirmed that added Ca(2+) and Si suppressed Cd-induced accumulation of O2 (·-) and H2O2 in the leaves. The results suggest that exogenous application of Ca(2+) and Si appears to be advantageous for rice plants in alleviating Cd(2+) toxicity effects by reducing Cd(2+) uptake, decreasing ROS production and suppressing oxidative damage. The observations indicate that Ca(2+) and Si treatments can help in reducing Cd(2+) toxicity in rice plants.


Subject(s)
Cadmium/toxicity , Calcium/pharmacology , Silicon Dioxide/pharmacology , Oryza/drug effects , Oryza/metabolism , Oxidative Stress/drug effects , Seedlings/drug effects , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...