Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
PLoS One ; 19(2): e0296483, 2024.
Article in English | MEDLINE | ID: mdl-38386667

ABSTRACT

Social contact mixing patterns are critical to model the transmission of communicable diseases, and have been employed to model disease outbreaks including COVID-19. Nonetheless, there is a paucity of studies on contact mixing in low and middle-income countries such as India. Furthermore, mathematical models of disease outbreaks do not account for the temporal nature of social contacts. We conducted a longitudinal study of social contacts in rural north India across three seasons and analysed the temporal differences in contact patterns. A contact diary survey was performed across three seasons from October 2015-16, in which participants were queried on the number, duration, and characteristics of contacts that occurred on the previous day. A total of 8,421 responses from 3,052 respondents (49% females) recorded characteristics of 180,073 contacts. Respondents reported a significantly higher number and duration of contacts in the winter, followed by the summer and the monsoon season (Nemenyi post-hoc, p<0.001). Participants aged 0-9 years and 10-19 years of age reported the highest median number of contacts (16 (IQR 12-21), 17 (IQR 13-24) respectively) and were found to have the highest node centrality in the social network of the region (pageranks = 0.20, 0.17). A large proportion (>80%) of contacts that were reported in schools or on public transport involved physical contact. To the best of our knowledge, our study is the first from India to show that contact mixing patterns vary by the time of the year and provides useful implications for pandemic control. We compared the differences in the number, duration and location of contacts by age-group and gender, and studied the impact of the season, age-group, employment and day of the week on the number and duration of contacts using multivariate negative binomial regression. We created a social network to further understand the age and gender-specific contact patterns, and used the contact matrices in each season to parameterise a nine-compartment agent-based model for simulating a COVID-19 epidemic in each season. Our results can be used to parameterize more accurate mathematical models for prediction of epidemiological trends of infections in rural India.


Subject(s)
COVID-19 , Pandemics , Female , Humans , Male , Seasons , Rural Population , Longitudinal Studies , COVID-19/epidemiology , India/epidemiology
3.
J Cell Sci ; 136(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37194499

ABSTRACT

Stationary clusters of vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance to axonal transport. Here, we investigated the role of vesicle motility characteristics in modulating the formation and lifetimes of such stationary clusters, and their effect on cargo flow. We developed a simulation model describing key features of axonal cargo transport, benchmarking the model against experiments in the posterior lateral mechanosensory neurons of Caenorhabditis elegans. Our simulations included multiple microtubule tracks and varied cargo motion states, and account for dynamic cargo-cargo interactions. Our model also incorporates static obstacles to vesicle transport in the form of microtubule ends, stalled vesicles and stationary mitochondria. We demonstrate, both in simulations and in an experimental system, that a reduction in reversal rates is associated with a higher proportion of long-lived stationary vesicle clusters and reduced net anterograde transport. Our simulations support the view that stationary clusters function as dynamic reservoirs of cargo vesicles, and reversals aid cargo in navigating obstacles and regulate cargo transport by modulating the proportion of stationary vesicle clusters along the neuronal process.


Subject(s)
Neurons , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Neurons/physiology , Axonal Transport/physiology , Phagocytosis , Organelles , Caenorhabditis elegans , Transport Vesicles/metabolism
4.
Biophys J ; 122(2): 333-345, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36502274

ABSTRACT

A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila. Choline acetyltransferase is mainly present in soluble form in the axon and catalyzes the acetylation of choline at the synapse. It does not form particulate structures in axons and moves at rates characteristic of slow component b (≈ 1-10 mm/day or 0.01-0.1 µm/s). Using our model, which incorporates active transport with paused and/or diffusive states, we predict bleach recovery, transport rates, and cargo trajectories obtained through kymographs, comparing these with experimental observations at different developmental stages. We show that changes in the diffusive fraction of cargo during these developmental stages dominate bleach recovery and that a combination of active motion with a paused state alone cannot reproduce the data. We compared predictions of the model with results from photoactivation experiments. The importance of the diffusive state in reproducing the bleach recovery signal in the slow axonal transport of small soluble proteins is our central result.


Subject(s)
Axonal Transport , Biochemical Phenomena , Animals , Axonal Transport/physiology , Choline O-Acetyltransferase/metabolism , Axons/metabolism , Drosophila/metabolism
5.
Lancet Reg Health Southeast Asia ; 8: 100095, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36267800

ABSTRACT

Background: The course of the COVID-19 pandemic has been driven by several dynamic behavioral, immunological, and viral factors. We used mathematical modeling to explore how the concurrent reopening of schools, increasing levels of hybrid immunity, and the emergence of the Omicron variant affected the trajectory of the pandemic in India, using Andhra Pradesh (pop: 53 million) as an exemplar Indian state. Methods: We constructed an age- and contact-structured compartmental model that allows for individuals to proceed through various states depending on whether they have received zero, one, or two doses of the COVID-19 vaccine. We calibrated our model using results from another model (i.e., INDSCI-SIM) as well as available context-specific serosurvey data. The introduction of the Omicron variant is modelled alongside protection gained from hybrid immunity. We predict disease dynamics in the background of hybrid immunity coming from infections and an ongoing vaccination program, given prior levels of seropositivity from earlier waves of infection. We describe the consequences of school reopening on cases across different age-bands, as well as the impact of the Omicron (BA.2) variant. Findings: We show the existence of an epidemic peak in India that is strongly related to the value of background seroprevalence. As expected, because children were not vaccinated in India, re-opening schools increases the number of cases in children more than in adults, although in all scenarios, the peak number of active hospitalizations was never greater than 0.45 times the corresponding peak in the Delta wave before schools were reopened. We varied the level of infection induced seropositivity in our model and found the height of the peak associated with schools reopening reduced as background infection-induced seropositivity increased from 20% to 40%. At reported values of seropositivity of 64% from representative surveys done in India, no discernible peak was observed. We also explored counterfactual scenarios regarding the effect of vaccination on hybrid immunity. We found that in the absence of vaccination, even at high levels of seroprevalence (>60%), the emergence of the Omicron variant would have resulted in a large rise in cases across all age bands by as much as 1.8 times. We conclude that the presence of high levels of hybrid immunity resulted in fewer cases in the Omicron wave than in the Delta wave. Interpretation: In India, decreasing prevalence of immunologically naïve individuals of all ages was associated with fewer cases reported once schools were reopened. In addition, hybrid immunity, together with the lower intrinsic severity of disease associated with the Omicron variant, contributed to low reported COVID-19 hospitalizations and deaths. Funding: World Health Organization, Mphasis.

6.
PLoS Comput Biol ; 18(10): e1010632, 2022 10.
Article in English | MEDLINE | ID: mdl-36279288

ABSTRACT

Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. Here, we use a 9-component, age-stratified, contact-structured epidemiological compartmental model, which we call the INDSCI-SIM model, to analyse the first wave of COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to daily reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions (NPIs), an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05-0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 35% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , India/epidemiology , Bayes Theorem , Communicable Disease Control , Pandemics
7.
Ecol Evol ; 12(9): e9278, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36110885

ABSTRACT

Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600-3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian (Plasmodium relictum) and human Plasmodium parasites (P. vivax and P. falciparum) as well as for two malaria-like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600-3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62-34.92°C (30.04°C) for P. falciparum, 13.51-34.08°C (29.02°C) for P. vivax, 12.56-34.46°C (29.16°C) for P. relictum and for two malaria-like parasites, 12.01-29.48°C (25.16°C) for Haemoproteus spp. and 11.92-29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine-scale thermal effects in the expansion of the range of the malaria parasite with global climate change.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-22278966

ABSTRACT

Social contact mixing patterns are critical to the transmission of communicable diseases and have been employed to model disease outbreaks including COVID-19. Nonetheless, there is a paucity of studies on contact mixing in low and middle-income countries such as India. Furthermore, mathematical models of disease outbreaks do not account for the temporal nature of social contacts. We conducted a longitudinal study of social contacts in rural north India across three seasons and analysed the temporal differences in contact patterns. A contact diary survey was performed across three seasons from October 2015-16, in which participants were queried on the number, duration, and characteristics of contacts that occurred on the previous day. A total of 8,421 responses from 3,052 respondents (49% females) recorded characteristics of 180,073 contacts. Respondents reported a significantly higher number and duration of contacts in the winter, followed by the summer and the monsoon season (Nemenyi post-hoc, p<0.001). Participants aged 0-9 years and 10-19 years of age reported the highest median number of contacts (16 (IQR 12-21), 17 (IQR 13-24) respectively) and were found to have the highest node centrality in the social network of the region (pageranks = 0.20, 0.17). Employed males across all age groups were found to have a higher number of contacts than unemployed males (Negative Binomial Regression: rate ratio 1.18, 95% CI: 1.05-1.31). A large proportion (>80%) of contacts that were reported in schools or on public transport involved physical contact. To the best of our knowledge, our study is the first from India to show that contact mixing patterns vary by the time of the year and provides useful implications for pandemic control. Our results can be used to parameterize more accurate mathematical models for prediction of epidemiological trends of infections in rural India.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-22276854

ABSTRACT

BackgroundThe course of the COVID-19 pandemic has been driven by several dynamic behavioral, immunological, and viral factors. We used mathematical modeling to explore how the concurrent reopening of schools, increasing levels of hybrid immunity, and the emergence of the Omicron variant have affected the trajectory of the pandemic in India, using the model Indian state of Andhra Pradesh (pop: 53 million). MethodsWe constructed an age- and contact-structured compartmental model that allows for individuals to proceed through various states depending on whether they have received zero, one, or two doses of the COVID-19 vaccine. Our model is calibrated using results from other models as well as available serosurvey data. The introduction of the Omicron variant is modelled alongside protection gained from hybrid immunity. We predict disease dynamics in the background of hybrid immunity coming from infections and well as an ongoing vaccination program, given prior levels of seropositivity from earlier waves of infection. We describe the consequences of school reopening on cases across different age-bands, as well as the impact of the Omicron (BA.2) variant. ResultsWe show the existence of an epidemic peak that is strongly related to the value of background seroprevalence. As expected, because children were not vaccinated in India, re-opening schools increases the number of cases in children more than in adults, although most such cases are asymptomatic or mild. The height of this peak reduced as the background infection-induced seropositivity was increased from 20% to 40%. At reported values of seropositivity of 64%, no discernable peak was seen. We also explore counterfactual scenarios regarding the effect of vaccination on hybrid immunity. We find that in the absence of vaccination, even at such high levels of seroprevalence, the emergence of the Omicron variant would have resulted in a large rise in cases across all age bands. We conclude that the presence of high levels of hybrid immunity thus resulted in relatively fewer cases in the Omicron wave than in the Delta wave. InterpretationIn India, the decreasing prevalence of immunologically naive individuals of all ages helped reduce the number of cases reported once schools were reopened. In addition, hybrid immunity, together with the lower intrinsic severity of disease associated with the Omicron variant, contributed to low reported COVID-19 hospitalizations and deaths. FundingWorld Health Organization, Mphasis

10.
Soft Matter ; 18(23): 4378-4388, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35611829

ABSTRACT

The adhesion of cells to substrates occurs via integrin clustering and binding to the actin cytoskeleton. Oncogenes modify anchorage-dependent mechanisms in cells during cancer progression. Fluid shear devices provide a label-free way to characterize cell-substrate interactions and heterogeneities in cell populations. We quantified the critical adhesion strengths of MCF-7, MDAMB-231, A549, HPL1D, HeLa, and NIH3T3 cells using a custom fluid shear device. The detachment response was sigmoidal for each cell type. A549 and MDAMB-231 cells had significantly lower critical adhesion strengths (τ50) than their non-invasive counterparts, HPL1D and MCF-7. Detachment dynamics inversely correlated with cell invasion potentials. A theoretical model, based on τ50 values and the distribution of cell areas on substrates, provided good fits to results from de-adhesion experiments. Quantification of cell tractions, using the Reg-FTTC method on 10 kPa polyacrylamide gels, showed highest values for invasive, MDAMB-231 and A549, cells compared to non-invasive cells. Immunofluorescence studies show differences in vinculin distributions; non-invasive cells have distinct vinculin puncta, whereas invasive cells have more dispersed distributions. The cytoskeleton in non-invasive cells was devoid of well-developed stress fibers, and had thicker cortical actin bundles in the boundary. Fluorescence intensity of actin was significantly lower in invasive cells as compared to non invasive cells. These correlations in adhesion strengths and traction stresses with cell invasiveness may be useful in cancer diagnostics and other pathologies featuring mis-regulation in adhesion.


Subject(s)
Actins , Neoplasms , Actins/metabolism , Animals , Cell Adhesion , Mice , NIH 3T3 Cells , Neoplasms/pathology , Traction , Vinculin/metabolism
11.
mBio ; 12(6): e0239821, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34809455

ABSTRACT

Cyanobacteria rely on photosynthesis, and thus have evolved complex responses to light. These include phototaxis, the ability of cells to sense light direction and move towards or away from it. Analysis of mutants has demonstrated that phototaxis requires the coordination of multiple photoreceptors and signal transduction networks. The output of these networks is relayed to type IV pili (T4P) that attach to and exert forces on surfaces or other neighboring cells to drive "twitching" or "gliding" motility. This, along with the extrusion of polysaccharides or "slime" by cells, facilitates the emergence of group behavior. We evaluate recent models that describe the emergence of collective colony-scale behavior from the responses of individual, interacting cells. We highlight the advantages of "active matter" approaches in the study of bacterial communities, discussing key differences between emergent behavior in cyanobacterial phototaxis and similar behavior in chemotaxis or quorum sensing.


Subject(s)
Phototaxis , Synechocystis/physiology , Synechocystis/radiation effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemotaxis , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/physiology , Fimbriae, Bacterial/radiation effects , Light , Mutation , Quorum Sensing , Synechocystis/genetics
12.
PLoS Comput Biol ; 17(7): e1009126, 2021 07.
Article in English | MEDLINE | ID: mdl-34292931

ABSTRACT

COVID-19 testing across India uses a mix of two types of tests. Rapid Antigen Tests (RATs) are relatively inexpensive point-of-care lateral-flow-assay tests, but they are also less sensitive. The reverse-transcriptase polymerase-chain-reaction (RT-PCR) test has close to 100% sensitivity and specificity in a laboratory setting, but delays in returning results, as well as increased costs relative to RATs, may vitiate this advantage. India-wide, about 49% of COVID-19 tests are RATs, but some Indian states, including the large states of Uttar Pradesh (pop. 227.9 million) and Bihar (pop. 121.3 million) use a much higher proportion of such tests. Here we show, using simulations based on epidemiological network models, that the judicious use of RATs can yield epidemiological outcomes comparable to those obtained through RT-PCR-based testing and isolation of positives, provided a few conditions are met. These are (a) that RAT test sensitivity is not too low, (b) that a reasonably large fraction of the population, of order 0.5% per day, can be tested, (c) that those testing positive are isolated for a sufficient duration, and that (d) testing is accompanied by other non-pharmaceutical interventions for increased effectiveness. We assess optimal testing regimes, taking into account test sensitivity and specificity, background seroprevalence and current test pricing. We find, surprisingly, that even 100% RAT test regimes should be acceptable, from both an epidemiological as well as a economic standpoint, provided the conditions outlined above are met.


Subject(s)
COVID-19 Testing , COVID-19 , Models, Statistical , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing/methods , COVID-19 Testing/standards , COVID-19 Testing/statistics & numerical data , Computational Biology , Humans , India , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
14.
Preprint in English | medRxiv | ID: ppmedrxiv-21258203

ABSTRACT

Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. The INDSCI-SIM model is a 9-component, age-stratified, contact-structured compartmental model for COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions, an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient across the country. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05 - 0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 40% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.

15.
Int J Infect Dis ; 103: 431-438, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33388436

ABSTRACT

BACKGROUND: The development and widespread use of an effective SARS-CoV-2 vaccine could prevent substantial morbidity and mortality associated with COVID-19 and mitigate the secondary effects associated with non-pharmaceutical interventions. METHODS: We used an age-structured, expanded SEIR model with social contact matrices to assess age-specific vaccine allocation strategies in India. We used state-specific age structures and disease transmission coefficients estimated from confirmed incident cases of COVID-19 between 1 July and 31 August 2020. Simulations were used to investigate the relative reduction in mortality and morbidity of vaccine allocation strategies based on prioritizing different age groups, and the interactions of these strategies with concurrent non-pharmaceutical interventions. Given the uncertainty associated with COVID-19 vaccine development, we varied vaccine characteristics in the modelling simulations. RESULTS: Prioritizing COVID-19 vaccine allocation for older populations (i.e., >60 years) led to the greatest relative reduction in deaths, regardless of vaccine efficacy, control measures, rollout speed, or immunity dynamics. Preferential vaccination of this group often produced relatively higher total symptomatic infections and more pronounced estimates of peak incidence than other assessed strategies. Vaccine efficacy, immunity type, target coverage, and rollout speed significantly influenced overall strategy effectiveness, with the time taken to reach target coverage significantly affecting the relative mortality benefit comparative to no vaccination. CONCLUSIONS: Our findings support global recommendations to prioritize COVID-19 vaccine allocation for older age groups. Relative differences between allocation strategies were reduced as the speed of vaccine rollout was increased. Optimal vaccine allocation strategies will depend on vaccine characteristics, strength of concurrent non-pharmaceutical interventions, and region-specific goals.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Models, Theoretical , SARS-CoV-2/immunology , Adult , Aged , Female , Humans , India , Middle Aged , Vaccination , Young Adult
16.
Preprint in English | medRxiv | ID: ppmedrxiv-20249106

ABSTRACT

COVID-19 testing across India uses a mix of two types of tests. Rapid Antigen Tests (RATs) are relatively inexpensive point-of-care lateral-flow-assay tests, but they are also less sensitive. The reverse-transcriptase polymerase-chain-reaction (RT-PCR) test has close to 100% sensitivity and specificity in a laboratory setting, but delays in returning results, as well as increased costs relative to RATs, may vitiate this advantage. India-wide, about 49% of COVID-19 tests are RATs, but some Indian states, including the large states of Uttar Pradesh (pop. 227.9 million) and Bihar (pop. 121.3 million) use a much higher proportion of such tests. Here we show, using simulations based on epidemiological network models, that the judicious use of RATs can yield epidemiological outcomes comparable to those obtained through RT-PCR-based testing and isolation of positives, provided a few conditions are met. These are (a) that RAT test sensitivity is not too low, (b) that a reasonably large fraction of the population, of order 0.5% per day, can be tested, (c) that those testing positive are isolated for a sufficient duration, and that (d) testing is accompanied by other non-pharmaceutical interventions for increased effectiveness. We assess optimal testing regimes, taking into account test sensitivity and specificity, background seroprevalence and current test pricing. We find, surprisingly, that even 100% RAT test regimes should be acceptable, from both an epidemiological as well as a economic standpoint, provided the conditions outlined above are met. Author summaryUsing network models, we study optimal ways of combining low sensitivity, relatively inexpensive point-of-care rapid antigen tests for COVID-19 with higher sensitivity but more expensive laboratory RT-PCR tests. We take into account background seroprevalence and current test pricing for such tests in India, finding that even purely rapid antigen test-based regimes can produce the same reduction in overall infections that pure RT-PCR tests are capable of. This is provided one can test at scale and isolate those testing positive effectively, that the sensitivity of the rapid test is not too low and that non-pharmaceutical interventions proceed in parallel for increased effectiveness.

17.
PLoS One ; 15(11): e0242375, 2020.
Article in English | MEDLINE | ID: mdl-33211740

ABSTRACT

Vasoplegia observed post cardiopulmonary bypass (CPB) is associated with substantial morbidity, multiple organ failure and mortality. Circulating counts of hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPC) are potential markers of neo-vascularization and vascular repair. However, the significance of changes in the circulating levels of these progenitors in perioperative CPB, and their association with post-CPB vasoplegia, are currently unexplored. We enumerated HSC and EPC counts, via flow cytometry, at different time-points during CPB in 19 individuals who underwent elective cardiac surgery. These 19 individuals were categorized into two groups based on severity of post-operative vasoplegia, a clinically insignificant vasoplegic Group 1 (G1) and a clinically significant vasoplegic Group 2 (G2). Differential changes in progenitor cell counts during different stages of surgery were compared across these two groups. Machine-learning classifiers (logistic regression and gradient boosting) were employed to determine if differential changes in progenitor counts could aid the classification of individuals into these groups. Enumerating progenitor cells revealed an early and significant increase in the circulating counts of CD34+ and CD34+CD133+ hematopoietic stem cells (HSC) in G1 individuals, while these counts were attenuated in G2 individuals. Additionally, EPCs (CD34+VEGFR2+) were lower in G2 individuals compared to G1. Gradient boosting outperformed logistic regression in assessing the vasoplegia grouping based on the fold change in circulating CD 34+ levels. Our findings indicate that a lack of early response of CD34+ cells and CD34+CD133+ HSCs might serve as an early marker for development of clinically significant vasoplegia after CPB.


Subject(s)
Blood Cell Count , Cardiopulmonary Bypass/adverse effects , Endothelial Progenitor Cells , Hematopoietic Stem Cells , Vasoplegia/blood , Adrenergic beta-Antagonists/therapeutic use , Adult , Aged , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Anthropometry , Comorbidity , Elective Surgical Procedures , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Intraoperative Period , Kinetics , Machine Learning , Male , Middle Aged , Pilot Projects , Postoperative Period , Severity of Illness Index , Vasoplegia/physiopathology
18.
Preprint in English | medRxiv | ID: ppmedrxiv-20236091

ABSTRACT

BackgroundThe development and widespread use of an effective SARS-CoV-2 vaccine could help prevent substantial morbidity and mortality associated with COVID-19 infection and mitigate many of the secondary effects associated with non-pharmaceutical interventions. The limited availability of an effective and licensed vaccine will task policymakers around the world, including in India, with decisions regarding optimal vaccine allocation strategies. Using mathematical modelling we aimed to assess the impact of different age-specific COVID-19 vaccine allocation strategies within India on SARS CoV-2-related mortality and infection. MethodsWe used an age-structured, expanded SEIR model with social contact matrices to assess different age-specific vaccine allocation strategies in India. We used state-specific age structures and disease transmission coefficients estimated from confirmed Indian incident cases of COVID-19 between 28 January and 31 August 2020. Simulations were used to investigate the relative reduction in mortality and morbidity of vaccinate allocation strategies based on prioritizing different age groups, and the interactions of these strategies with several concurrent non-pharmacologic interventions (i.e., social distancing, mandated masks, lockdowns). Given the uncertainty associated with current COVID-19 vaccine development, we also varied several vaccine characteristics (i.e., efficacy, type of immunity conferred, and rollout speed) in the modelling simulations. ResultsIn nearly all scenarios, prioritizing COVID-19 vaccine allocation for older populations (i.e., >60yrs old) led to the greatest relative reduction in deaths, regardless of vaccine efficacy, control measures, rollout speed, or immunity dynamics. However, preferential vaccination of this target group often produced higher total symptomatic infection counts and more pronounced estimates of peak incidence than strategies which targeted younger adults (i.e., 20-40yrs or 40-60yrs) or the general population irrespective of age. Vaccine efficacy, immunity type, target coverage and rollout speed all significantly influenced overall strategy effectiveness, with the time taken to reach target coverage significantly affecting the relative mortality benefit comparative to no vaccination. ConclusionsOur findings support global recommendations to prioritize COVID-19 vaccine allocation for older age groups. Including younger adults in the prioritisation group can reduce overall infection rates, although this benefit was countered by the larger mortality rates in older populations. Ultimately an optimal vaccine allocation strategy will depend on vaccine characteristics, strength of concurrent non-pharmaceutical interventions, and region-specific goals such as reducing mortality, morbidity, or peak incidence.

20.
Emerg Top Life Sci ; 4(2): 111-118, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32830859

ABSTRACT

The patterns of the large-scale spatial organization of chromatin in interphase human somatic cells are not random. Such patterns include the radial separation of euchromatin and heterochromatin, the territorial organization of individual chromosomes, the non-random locations of chromosome territories and the differential positioning of the two X chromosomes in female cells. These features of large-scale nuclear architecture follow naturally from the hypothesis that ATP-consuming non-equilibrium processes associated with highly transcribed regions of chromosomes are a source of 'active' forces. These forces are in excess of those that arise from Brownian motion. Simulations of model chromosomes that incorporate such activity recapitulate these features. In addition, they reproduce many other aspects of the spatial organization of chromatin at large scales that are known from experiments. Our results, reviewed here, suggest that the distribution of transcriptional activity across chromosomes underlies many aspects of large-scale nuclear architecture that were hitherto believed to be unrelated.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Models, Biological , Adenosine Triphosphate/metabolism , Cell Line , Cell Nucleus/genetics , Chromosomes, Human, X/metabolism , DNA Repair , Female , Gene Expression , Humans , Interphase/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL