Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 31(6): 1855-1862, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519937

ABSTRACT

Investigation of temperature-dependent photoluminescent properties of potassium perylene-3,4,9,10-tetracarboxylate (K4PTC), a molecule with no internal rotational degrees of freedom, shows aggregation-induced enhanced emission at room temperature. The different excitonic emission processes are dependent of temperature, some of which quenches in an intermediate temperature range (from 50 to 150 K). The exciton excited states switching phenomenon from "dark" to "bright" states is observed and its explained using Herzberg-Teller selection rule. K4PTC is a molecule comparable to the size of its precursor, perylene-3,4,9,10-tetracarboxylic anhydride (PTCDA) and is highly soluble in water, contrary to PTCDA, which is poorly soluble in most solvents. Powder x-ray diffraction measurements corroborate a lesser degree of ordering of bulk K4PTC compared to bulk PTCDA. The green luminescent molecule could, in principle, be used as a biomarker, or in photodynamic therapy, if further studies show relatively low toxicity.

2.
Sci Rep ; 7: 40843, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102312

ABSTRACT

The formation of charge neutrality level (CNL) in highly conducting Cadmium oxide (CdO) thin films is demonstarted by the observed variation in the band gap upon annealing and doping. It may be explained by the observation that Tin (Sn) doping breaks the perfect periodicity of CdO cubic crystal structure and creates virtual gap states (ViGS). The level of local CNL resides at the branch point of ViGS, making the energy at which native defect's character changes from predominantly donor-like below CNL to predominantly acceptor-like above the CNL and a schematic band diagram is developed to substantiate the same. Further investigations using soft x-ray absorption spectroscopy (SXAS) at Oxygen and Cadmium edges show the reduction of Sn4+ to Sn2+. The analysis of the spectral features has revealed an evidence of p-d interaction between O 2p and Cd 4d orbitals that pushes the valence band minima at higher energies which is symmetry forbidden at г point and causing a positive valance band dispersion away from the zone centre in the г ~ L, K direction. Thus, origin of the CNL is attributed to the high density of the Oxygen vacancies as confirmed by the change in the local electronic structure and p-d hybridization of orbitals.

3.
Phys Chem Chem Phys ; 18(5): 3618-27, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26752253

ABSTRACT

The electronic structure and tuning of work function (WF) by electronic excitations (EEs) induced by swift heavy ions (SHIs) in anatase niobium-doped titanium dioxide (NTO) thin films is reported. The densities of EEs were varied using 80 MeV O, 130 MeV Ni and 120 MeV Ag ions for irradiation. The EE-induced modifications in electronic structure were studied by O K-edge and Ti L3,2 edge absorption spectra using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The reduction of hybridized O 2p and Ti 3d unoccupied states in the conduction band with a decrease in energy of the crystal field strength of ∼ 480 meV and the correlated effect on the decrease in the WF value of ∼ 520 meV upon increasing the total energy deposition in the lattice are evident from the study of NEXAFS and scanning Kelvin probe microscopy (SKPM), respectively. The observed stiffening in the low frequency Raman mode (LFRM) of ∼ 9 cm(-1) further validates the electronic structure modification under the influence of EE-induced strain in TiO6 octahedra. The reduction of hybridized valence states, stiffening behavior of LFRM and decrease in WF by nano-crystallization followed by amorphization and defects in NTO lattice are explained in terms of continuous, discontinuous amorphous ion tracks containing intestinally created defects and non-stoichiometry in the lattice. These studies are very appropriate for better insights of electronic structure modification during phase transformation and controlled Fermi level shifting, which plays a crucial role in controlling the charge carrier injection efficiency in opto-electronic applications and also provides a deeper understanding of the involved physical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...