Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Brief Funct Genomics ; 22(3): 281-290, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36542133

ABSTRACT

Odorant receptors (ORs) obey mutual exclusivity and monoallelic mode of expression. Efforts are ongoing to decipher the molecular mechanism that drives the 'one-neuron-one-receptor' rule of olfaction. Recently, single-cell profiling of olfactory sensory neurons (OSNs) revealed the expression of multiple ORs in the immature neurons, suggesting that the OR gene choice mechanism is much more complex than previously described by the silence-all-and-activate-one model. These results also led to the genesis of two possible mechanistic models i.e. winner-takes-all and stochastic selection. We developed Reverse Cell Tracking (RCT), a novel computational framework that facilitates OR-guided cellular backtracking by leveraging Uniform Manifold Approximation and Projection embeddings from RNA Velocity Workflow. RCT-based trajectory backtracking, coupled with statistical analysis, revealed the OR gene choice bias for the transcriptionally advanced (highest expressed) OR during neuronal differentiation. Interestingly, the observed selection bias was uniform for all ORs across different spatial zones or their relative expression within the olfactory organ. We validated these findings on independent datasets and further confirmed that the OR gene selection may be regulated by Upf3b. Lastly, our RNA dynamics-based tracking of the differentiation cascade revealed a transition cell state that harbors mixed molecular identities of immature and mature OSNs, and their relative abundance is regulated by Upf3b.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Olfactory Receptor Neurons/metabolism , Cell Differentiation/genetics
2.
Nat Chem Biol ; 18(11): 1204-1213, 2022 11.
Article in English | MEDLINE | ID: mdl-35953549

ABSTRACT

The genome of a eukaryotic cell is often vulnerable to both intrinsic and extrinsic threats owing to its constant exposure to a myriad of heterogeneous compounds. Despite the availability of innate DNA damage responses, some genomic lesions trigger malignant transformation of cells. Accurate prediction of carcinogens is an ever-challenging task owing to the limited information about bona fide (non-)carcinogens. We developed Metabokiller, an ensemble classifier that accurately recognizes carcinogens by quantitatively assessing their electrophilicity, their potential to induce proliferation, oxidative stress, genomic instability, epigenome alterations, and anti-apoptotic response. Concomitant with the carcinogenicity prediction, Metabokiller is fully interpretable and outperforms existing best-practice methods for carcinogenicity prediction. Metabokiller unraveled potential carcinogenic human metabolites. To cross-validate Metabokiller predictions, we performed multiple functional assays using Saccharomyces cerevisiae and human cells with two Metabokiller-flagged human metabolites, namely 4-nitrocatechol and 3,4-dihydroxyphenylacetic acid, and observed high synergy between Metabokiller predictions and experimental validations.


Subject(s)
Artificial Intelligence , Carcinogens , Humans , Carcinogens/toxicity , 3,4-Dihydroxyphenylacetic Acid , Cell Transformation, Neoplastic/genetics , Genomic Instability
3.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35868454

ABSTRACT

Artificial intelligence (AI)-based computational techniques allow rapid exploration of the chemical space. However, representation of the compounds into computational-compatible and detailed features is one of the crucial steps for quantitative structure-activity relationship (QSAR) analysis. Recently, graph-based methods are emerging as a powerful alternative to chemistry-restricted fingerprints or descriptors for modeling. Although graph-based modeling offers multiple advantages, its implementation demands in-depth domain knowledge and programming skills. Here we introduce deepGraphh, an end-to-end web service featuring a conglomerate of established graph-based methods for model generation for classification or regression tasks. The graphical user interface of deepGraphh supports highly configurable parameter support for model parameter tuning, model generation, cross-validation and testing of the user-supplied query molecules. deepGraphh supports four widely adopted methods for QSAR analysis, namely, graph convolution network, graph attention network, directed acyclic graph and Attentive FP. Comparative analysis revealed that deepGraphh supported methods are comparable to the descriptors-based machine learning techniques. Finally, we used deepGraphh models to predict the blood-brain barrier permeability of human and microbiome-generated metabolites. In summary, deepGraphh offers a one-stop web service for graph-based methods for chemoinformatics.


Subject(s)
Artificial Intelligence , Quantitative Structure-Activity Relationship , Humans , Machine Learning
4.
Front Mol Biosci ; 9: 1106963, 2022.
Article in English | MEDLINE | ID: mdl-36703917

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the second leading cause of cancer-related morbidity and mortality in India. Tobacco, alcohol, poor oral hygiene, and socio-economic factors remain causative for this high prevalence. Identification of non-invasive diagnostic markers tailored for Indian population can facilitate mass screening to reduce overall disease burden. Saliva offers non-invasive sampling and hosts a plethora of markers for OSCC diagnosis. Here, to capture the OSCC-specific salivary RNA markers suitable for Indian population, we performed RNA-sequencing of saliva from OSCC patients (n = 9) and normal controls (n = 5). Differential gene expression analysis detected an array of salivary RNAs including mRNAs, long non-coding RNAs, transfer-RNAs, and microRNAs specific to OSCC. Computational analysis and functional predictions identified protein kinase c alpha (PRKCA), miR-6087, miR-449b-5p, miR-3656, miR-326, miR-146b-5p, and miR-497-5p as potential salivary indicators of OSCC. Notably, higher expression of PRKCA, miR-6087 and miR-449b-5p were found to be associated with therapeutic resistance and poor survival, indicating their prognostic potential. In addition, sequencing reads that did not map to the human genome, showed alignments with microbial reference genomes. Metagenomic and statistical analysis of these microbial reads revealed a remarkable microbial dysbiosis between OSCC patients and normal controls. Moreover, the differentially abundant microbial taxa showed a significant association with tumor promoting pathways including inflammation and oxidative stress. Summarily, we provide an integrated landscape of OSCC-specific salivary RNAs relevant to Indian population which can be instrumental in devising non-invasive diagnostics for OSCC.

5.
J Biol Chem ; 297(2): 100956, 2021 08.
Article in English | MEDLINE | ID: mdl-34265305

ABSTRACT

The molecular mechanisms of olfaction, or the sense of smell, are relatively underexplored compared with other sensory systems, primarily because of its underlying molecular complexity and the limited availability of dedicated predictive computational tools. Odorant receptors (ORs) allow the detection and discrimination of a myriad of odorant molecules and therefore mediate the first step of the olfactory signaling cascade. To date, odorant (or agonist) information for the majority of these receptors is still unknown, limiting our understanding of their functional relevance in odor-induced behavioral responses. In this study, we introduce OdoriFy, a Web server featuring powerful deep neural network-based prediction engines. OdoriFy enables (1) identification of odorant molecules for wildtype or mutant human ORs (Odor Finder); (2) classification of user-provided chemicals as odorants/nonodorants (Odorant Predictor); (3) identification of responsive ORs for a query odorant (OR Finder); and (4) interaction validation using Odorant-OR Pair Analysis. In addition, OdoriFy provides the rationale behind every prediction it makes by leveraging explainable artificial intelligence. This module highlights the basis of the prediction of odorants/nonodorants at atomic resolution and for the ORs at amino acid levels. A key distinguishing feature of OdoriFy is that it is built on a comprehensive repertoire of manually curated information of human ORs with their known agonists and nonagonists, making it a highly interactive and resource-enriched Web server. Moreover, comparative analysis of OdoriFy predictions with an alternative structure-based ligand interaction method revealed comparable results. OdoriFy is available freely as a web service at https://odorify.ahujalab.iiitd.edu.in/olfy/.


Subject(s)
Artificial Intelligence , Odorants , Ligands , Olfactory Receptor Neurons/metabolism , Signal Transduction
6.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34184038

ABSTRACT

Dramatic genomic alterations, either inducible or in a pathological state, dismantle the core regulatory networks, leading to the activation of normally silent genes. Despite possessing immense therapeutic potential, accurate detection of these transcripts is an ever-challenging task, as it requires prior knowledge of the physiological gene expression levels. Here, we introduce EcTracker, an R-/Shiny-based single-cell data analysis web server that bestows a plethora of functionalities that collectively enable the quantitative and qualitative assessments of bona fide cell types or tissue-specific transcripts and, conversely, the ectopically expressed genes in the single-cell ribonucleic acid sequencing datasets. Moreover, it also allows regulon analysis to identify the key transcriptional factors regulating the user-selected gene signatures. To demonstrate the EcTracker functionality, we reanalyzed the CRISPR interference (CRISPRi) dataset of the human embryonic stem cells differentiated into endoderm lineage and identified the prominent enrichment of a specific gene signature in the SMAD2 knockout cells whose identity was ambiguous in the original study. The key distinguishing features of EcTracker lie within its processing speed, availability of multiple add-on modules, interactive graphical user interface and comprehensiveness. In summary, EcTracker provides an easy-to-perform, integrative and end-to-end single-cell data analysis platform that allows decoding of cellular identities, identification of ectopically expressed genes and their regulatory networks, and therefore, collectively imparts a novel dimension for analyzing single-cell datasets.


Subject(s)
Computational Biology , Ectopic Gene Expression , RNA-Seq , Single-Cell Analysis , Software , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Humans , Organ Specificity , Single-Cell Analysis/methods , Transcription Factors/metabolism , User-Computer Interface , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...