Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005279

ABSTRACT

BACKGROUND: Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. RESULTS: Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. CONCLUSION: Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.

2.
PLOS Glob Public Health ; 2(2): e0000133, 2022.
Article in English | MEDLINE | ID: mdl-36962278

ABSTRACT

Indigenous populations residing in low- and middle-income countries (LMICs) are highly underrepresented in medicine and public health research. Specifically, data on non-communicable diseases (NCDs) from indigenous populations remains scarce. Despite the increasing burden of NCDs in the Himalayan region, their prevalence in many indigenous populations remains understudied. The nationally representative public health surveys often do not include the indigenous communities, especially those that reside in rural areas or exist in small numbers. This observational cross-sectional survey study aimed to assess the prevalence of three NCD risk factors namely obesity, hypertension, and tachycardia and identify dietary and lifestyle variables associated with them across underrepresented indigenous populations of Nepal. A total of 311 individuals (53.3% women, 46.7% men) with mean age 43±15 years from 12 indigenous Nepali communities residing in rural (47.9%) or semi-urban (52.1%) areas volunteered to participate in this study. Univariate tests and multivariable logistic regressions were used to analyze the survey data. The mean systolic and diastolic blood pressures were 121.3±19.5 mmHg and 81.3±11.8 mmHg respectively. Overall, the prevalence of obesity and tachycardia was low (0.64% and 3.22%, respectively) but hypertension was prevalent at 23.8%. Hypertension was not significantly different across populations, but it was associated with age, BMI, and tobacco use, and collectively, these variables explained 13.9% variation in hypertension prevalence. Although we were unable to detect direct associations between individual determinants of hypertension identified in non-indigenous Nepalis, such as education levels, alcohol consumption, and smoking in this study, having one or more determinants increased the odds of hypertension in the indigenous participants. Furthermore, ~14% of the hypertensive individuals had none of the universally identified hypertension risk factors. The lack of association between previously identified risk factors for hypertension in these individuals indicates that the additional determinants of hypertension remain to be identified in indigenous Nepali populations.

3.
PLoS Biol ; 16(11): e2005396, 2018 11.
Article in English | MEDLINE | ID: mdl-30439937

ABSTRACT

The composition of the gut microbiome in industrialized populations differs from those living traditional lifestyles. However, it has been difficult to separate the contributions of human genetic and geographic factors from lifestyle. Whether shifts away from the foraging lifestyle that characterize much of humanity's past influence the gut microbiome, and to what degree, remains unclear. Here, we characterize the stool bacterial composition of four Himalayan populations to investigate how the gut community changes in response to shifts in traditional human lifestyles. These groups led seminomadic hunting-gathering lifestyles until transitioning to varying levels of agricultural dependence upon farming. The Tharu began farming 250-300 years ago, the Raute and Raji transitioned 30-40 years ago, and the Chepang retain many aspects of a foraging lifestyle. We assess the contributions of dietary and environmental factors on their gut-associated microbes and find that differences in the lifestyles of Himalayan foragers and farmers are strongly correlated with microbial community variation. Furthermore, the gut microbiomes of all four traditional Himalayan populations are distinct from that of the Americans, indicating that industrialization may further exacerbate differences in the gut community. The Chepang foragers harbor an elevated abundance of taxa associated with foragers around the world. Conversely, the gut microbiomes of the populations that have transitioned to farming are more similar to those of Americans, with agricultural dependence and several associated lifestyle and environmental factors correlating with the extent of microbiome divergence from the foraging population. The gut microbiomes of Raute and Raji reveal an intermediate state between the Chepang and Tharu, indicating that divergence from a stereotypical foraging microbiome can occur within a single generation. Our results also show that environmental factors such as drinking water source and solid cooking fuel are significantly associated with the gut microbiome. Despite the pronounced differences in gut bacterial composition across populations, we found little differences in alpha diversity across lifestyles. These findings in genetically similar populations living in the same geographical region establish the key role of lifestyle in determining human gut microbiome composition and point to the next challenging steps of determining how large-scale gut microbiome reconfiguration impacts human biology.


Subject(s)
Gastrointestinal Microbiome/genetics , Life Style/ethnology , Microbiota/genetics , Adult , Bacteria/genetics , Diet , Diet, Paleolithic , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Genetics, Population/methods , Geography , Humans , Male , Middle Aged , Nepal/ethnology , RNA, Ribosomal, 16S/genetics , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...