Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Insects ; 10(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779157

ABSTRACT

Arctic ecosystems are subjected to strong environmental constraints that prevent both the colonization and development of many organisms. In Svalbard, few aphid species have established permanent populations. These high arctic aphid species have developed peculiar life-history traits such as shortened life cycles and reduced dispersal capacities. Here, we present data on the distribution and population genetics of Acyrthosiphon svalbardicum in Spitsbergen, the main island of the Svalbard archipelago, and compared its genetic structure with that of its close relative Acyrthosiphon brevicorne, sampled in the top of Scandinavian mainland. We found that A. svalbardicum is common but heterogeneously distributed along the west coast of Spitsbergen. We recorded this species up to 79°12', which constitutes the northernmost location for any aphid. Genetic structure examined using microsatellite markers showed more pronounced spatial differentiation in A. svalbardicum than in A. brevicorne populations, presumably due to reduced dispersal capacities in the former species. Although populations of A. brevicorne and A. svalbardicum were well-delineated at nuclear loci, they shared similar cytoplasmic DNA haplotypes as revealed by sequence analysis of two DNA barcodes. These results raise questions about whether these two taxa are different species, and the colonization sources and history of the Svalbard archipelago by A. svalbardicum.

2.
BMC Res Notes ; 11(1): 461, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29996907

ABSTRACT

OBJECTIVE: Targeted sequencing of 16S rDNA amplicons is routinely used for microbial community profiling but this method suffers several limitations such as bias affinity of universal primers and short read size. Gene capture by hybridization represents a promising alternative. Here we used a metagenomic extract from the pea aphid Acyrthosiphon pisum to compare the performances of two widely used PCR primer pairs with DNA capture, based on solution hybrid selection. RESULTS: All methods produced an exhaustive description of the 8 bacterial taxa known to be present in this sample. In addition, the methods yielded similar quantitative results, with the number of reads strongly correlating with quantitative PCR controls. Both methods can thus be considered as qualitatively and quantitatively robust on such a sample with low microbial complexity.


Subject(s)
Aphids/microbiology , DNA, Ribosomal/genetics , Microbiota/genetics , Animals , High-Throughput Nucleotide Sequencing , Pisum sativum , RNA, Ribosomal, 16S , Sequence Analysis, DNA
3.
PLoS One ; 11(6): e0155392, 2016.
Article in English | MEDLINE | ID: mdl-27258532

ABSTRACT

All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts.


Subject(s)
Coleoptera/microbiology , Diptera/microbiology , Animals , Biodiversity , Diptera/parasitology , Microbiota
4.
R Soc Open Sci ; 2(7): 150144, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26587271

ABSTRACT

Cultured pearls are human creations formed by inserting a nucleus and a small piece of mantle tissue into a living shelled mollusc, usually a pearl oyster. Although many pearl observations intuitively suggest a possible rotation of the nucleated pearl inside the oyster, no experimental demonstration of such a movement has ever been done. This can be explained by the difficulty of observation of such a phenomenon in the tissues of a living animal. To investigate this question of pearl rotation, a magnetometer system was specifically engineered to register magnetic field variations with magnetic sensors from movements of a magnetic nucleus inserted in the pearl oyster. We demonstrated that a continuous movement of the nucleus inside the oyster starts after a minimum of 40 days post-grafting and continues until the pearl harvest. We measured a mean angular speed of 1.27° min(-1) calculated for four different oysters. Rotation variability was observed among oysters and may be correlated to pearl shape and defects. Nature's ability to generate so amazingly complex structures like a pearl has delivered one of its secrets.

5.
PLoS One ; 10(3): e0120664, 2015.
Article in English | MEDLINE | ID: mdl-25807173

ABSTRACT

Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa.


Subject(s)
Aphids/genetics , Animals , Aphids/classification , Aphids/microbiology , Bacteria/isolation & purification , Buchnera/isolation & purification , Cluster Analysis , Erwinia/isolation & purification , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Pantoea/isolation & purification , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, RNA , Symbiosis , Wolbachia/isolation & purification
6.
PLoS Genet ; 10(12): e1004838, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25473828

ABSTRACT

Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼ 300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.


Subject(s)
Aphids/genetics , Gene Transfer, Horizontal , Pisum sativum/parasitology , Reproduction, Asexual/genetics , Animals , Aphids/physiology , Chromosome Mapping , Crosses, Genetic , Female , Genetics, Population , Male , Parthenogenesis/genetics , Quantitative Trait Loci , Reproduction/genetics
7.
Scanning ; 36(5): 487-99, 2014.
Article in English | MEDLINE | ID: mdl-24752811

ABSTRACT

We have developed a method to use fast Fourier transformation (FFT) and inverse fast Fourier transformation (IFFT) to investigate hidden periodic structures on SEM images. We focused on samples of natural, play-of-color opals that diffract visible light and hence are periodically structured. Conventional sample preparation by hydrofluoric acid etch was not used; untreated, freshly broken surfaces were examined at low magnification relative to the expected period of the structural features, and, the SEM was adjusted to get a very high number of pixels in the images. These SEM images were treated by software to calculate autocorrelation, FFT, and IFFT. We present how we adjusted SEM acquisition parameters for best results. We first applied our procedure on an SEM image on which the structure was obvious. Then, we applied the same procedure on a sample that must contain a periodic structure because it diffracts visible light, but on which no structure was visible on the SEM image. In both cases, we obtained clearly periodic patterns that allowed measurements of structural parameters. We also investigated how the irregularly broken surface interfered with the periodic structure to produce additional periodicity. We tested the limits of our methodology with the help of simulated images.

8.
G3 (Bethesda) ; 4(4): 657-67, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24531730

ABSTRACT

In aphids, clonal individuals can show distinct morphologic traits in response to environmental cues. Such phenotypic plasticity cannot be studied with classical genetic model organisms such as Caenorhabditis elegans or Drosophila melanogaster. The genetic basis of this biological process remain unknown, as mutations affecting this process are not available in aphids. Here, we describe a protocol to treat third-stage larvae with an alkylating mutagen, ethyl methanesulfonate (EMS), to generate random mutations within the Acyrthosiphon pisum genome. We found that even low concentrations of EMS were toxic for two genotypes of A. pisum. Mutagenesis efficiency was nevertheless assessed by estimating the occurrence of mutational events on the X chromosome. Indeed, any lethal mutation on the X-chromosome would kill males that are haploid on the X so that we used the proportion of males as an estimation of mutagenesis efficacy. We could assess a putative mutation rate of 0.4 per X-chromosome at 10 mM of EMS. We then applied this protocol to perform a small-scale mutagenesis on parthenogenetic individuals, which were screened for defects in their ability to produce sexual individuals in response to photoperiod shortening. We found one mutant line showing a reproducible altered photoperiodic response with a reduced production of males and the appearance of aberrant winged males (wing atrophy, alteration of legs morphology). This mutation appeared to be stable because it could be transmitted over several generations of parthenogenetic individuals. To our knowledge, this study represents the first example of an EMS-generated aphid mutant.


Subject(s)
Aphids/drug effects , Ethyl Methanesulfonate/toxicity , Animals , Aphids/genetics , Aphids/growth & development , Female , Genome, Insect , Genotype , Larva/drug effects , Male , Mutagenesis , Wings, Animal/abnormalities , X Chromosome/drug effects
9.
Environ Microbiol Rep ; 5(3): 393-403, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23754720

ABSTRACT

Several bacterial strains of the Pseudomonas genus provide plant growth stimulation, plant protection against pests or bioremediation. Among these bacteria, P. fluorescens Pf29Arp reduces the severity of take-all, a disease caused by the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In this study, we obtained a draft genome of Pf29Arp and subsequent comparative genomic analyses have revealed that this bacterial strain is closely related to strains of the 'P. brassicacearum-like' subgroup including P. brassicacearum ssp. brassicacearum NFM421 and P. fluorescens F113. Despite an overall chromosomal organization similar to these strains, a number of features including antibiotic synthesis gene clusters from secondary metabolism are not found in the Pf29Arp genome. But Pf29Arp possesses different protein secretion systems including type III (T3SS) and type VI (T6SS) secretion systems. Pf29Arp is the first Pseudomonas sp. strain described with four T6SS clusters (cluster I, II, III and IV). In addition, some protein-coding genes involved in the assembly of these secretion systems are basally expressed during Pf29Arp colonization of healthy wheat roots and display different expression patterns on necrotized roots caused by Ggt. These data suggest a role of T3SS and T6SS in the Pf29Arp adaptation to different root environments.


Subject(s)
Bacterial Proteins/genetics , Chromosomes, Bacterial , Gene Expression Regulation, Bacterial , Genome, Bacterial , Plant Roots/microbiology , Pseudomonas fluorescens/genetics , Triticum/microbiology , Adaptation, Physiological , Ascomycota/growth & development , Ascomycota/pathogenicity , Bacterial Proteins/metabolism , Biological Control Agents , Chromosome Mapping , Multigene Family , Phylogeny , Pseudomonas fluorescens/classification , Pseudomonas fluorescens/metabolism , Rhizosphere , Symbiosis/physiology
10.
BMC Evol Biol ; 12: 216, 2012 Nov 12.
Article in English | MEDLINE | ID: mdl-23145470

ABSTRACT

BACKGROUND: The sequencing of the genome of the pea aphid Acyrthosiphon pisum revealed an unusual expansion of the miRNA machinery, with two argonaute-1, two dicer-1 and four pasha gene copies. In this report, we have undertaken a deeper evolutionary analysis of the phylogenetic timing of these gene duplications and of the associated selective pressures by sequencing the two copies of ago-1 and dcr-1 in different aphid species of the subfamily Aphidinae. We have also carried out an analysis of the expression of both copies of ago-1 and dcr-1 by semi-quantitative PCR in different morphs of the pea aphid life cycle. RESULTS: The analysis has shown that the duplication of ago-1 occurred in an ancestor of the subfamily Aphidinae while the duplication of dcr-1 appears to be more recent. Besides, it has confirmed a pattern of one conserved copy and one accelerated copy for both genes, and has revealed the action of positive selection on several regions of the fast-evolving ago-1b. On the other hand, the semi-quantitative PCR experiments have revealed a differential expression of these genes between the morphs of the parthenogenetic and the sexual phases of Acyrthosiphon pisum. CONCLUSIONS: The discovery of these gene duplications in the miRNA machinery of aphids opens new perspectives of research about the regulation of gene expression in these insects. Accelerated evolution, positive selection and differential expression affecting some of the copies of these genes suggests the possibility of a neofunctionalization of these duplicates, which might play a role in the display of the striking phenotypic plasticity of aphids.


Subject(s)
Aphids/genetics , Gene Duplication , Gene Expression Profiling , Insect Proteins/genetics , MicroRNAs/genetics , Alternative Splicing , Animals , Argonaute Proteins/classification , Argonaute Proteins/genetics , Evolution, Molecular , Female , Gene Conversion , Insect Proteins/classification , Male , Models, Genetic , Molecular Sequence Data , Phylogeny , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Ribonuclease III/classification , Ribonuclease III/genetics , Sequence Analysis, DNA
11.
J Insect Physiol ; 58(12): 1517-24, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22967755

ABSTRACT

Aphids are among the rare organisms that can change their reproductive mode across their life cycle. During spring and summer they reproduce clonally and efficiently by parthenogenesis. At the end of summer aphids perceive the shortening of day length which triggers the production of sexual individuals - males and oviparous females - that will mate and lay overwintering cold-resistant eggs. Recent large scale transcriptomic studies allowed the discovery of transcripts and functions such as nervous and hormonal signaling involved in the early steps of detection and transduction of the photoperiodic signal. Nevertheless these experiments were performed under controlled conditions when the photoperiod was the only varying parameter. To characterize the response of aphids under natural conditions, aphids were reared outdoor both in summer and autumn and material was collected to compare their transcriptomic profile using a cDNA microarray containing around 7000 transcripts. Statistical analyses revealed that close to 5% of these transcripts (367) were differentially expressed at two developmental stages of the process in response to the autumnal environmental conditions. Functional classification of regulated transcripts confirmed the putative contribution of the neuro-endocrine system in the process. Furthermore, these experiments revealed the regulation of transcripts involved in juvenile hormone synthesis and signaling pathway, confirming the key role played by these molecules in the reproductive mode switch. Aphids placed under outdoor conditions were confronted to a range of abiotic factors such as temperature fluctuations which was confirmed by the differential expression of an important proportion of heat shock protein transcripts between the two seasons. Finally, this original approach completed the understanding of genetic programs involved in aphid phenotypic plasticity.


Subject(s)
Aphids/metabolism , Parthenogenesis , Photoperiod , Animals , Aphids/genetics , Female , Gene Expression Profiling , Male , Transcriptome
12.
PLoS One ; 6(12): e28051, 2011.
Article in English | MEDLINE | ID: mdl-22162754

ABSTRACT

Piwi-interacting RNAs (piRNAs) are known to regulate transposon activity in germ cells of several animal models that propagate sexually. However, the role of piRNAs during asexual reproduction remains almost unknown. Aphids that can alternate sexual and asexual reproduction cycles in response to seasonal changes of photoperiod provide a unique opportunity to study piRNAs and the piRNA pathway in both reproductive modes. Taking advantage of the recently sequenced genome of the pea aphid Acyrthosiphon pisum, we found an unusually large lineage-specific expansion of genes encoding the Piwi sub-clade of Argonaute proteins. In situ hybridisation showed differential expressions between the duplicated piwi copies: while Api-piwi2 and Api-piwi6 are "specialised" in germ cells their most closely related copy, respectively Api-piwi5 and Api-piwi3, are expressed in the somatic cells. The differential expression was also identified in duplicated ago3: Api-ago3a in germ cells and Api-ago3b in somatic cells. Moreover, analyses of expression profiles of the expanded piwi and ago3 genes by semi-quantitative RT-PCR showed that expressions varied according to the reproductive types. These specific expression patterns suggest that expanded aphid piwi and ago3 genes have distinct roles in asexual and sexual reproduction.


Subject(s)
Aphids/metabolism , Argonaute Proteins/metabolism , RNA, Small Interfering/metabolism , Animals , Cell Lineage , Cloning, Molecular , Codon, Terminator , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genome, Plant , In Situ Hybridization , Models, Biological , Models, Genetic , Oligonucleotides, Antisense/genetics , Phylogeny , Reproduction , Seasons
13.
Insect Biochem Mol Biol ; 40(3): 235-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20018241

ABSTRACT

For poikilotherm animals such as insects, extreme temperatures can be a severe issue in continental regions. Aphids, which reproduce in spring and summer by viviparity, are prone to death in hard winter conditions. These species exhibit reproductive plasticity adapted to winter by producing oviparous females in autumn, which lay overwintering eggs. This switch is driven by photoperiodism, and long nights are sufficient to trigger the change in reproductive mode. Global transcriptomic analyses applied to the pea aphid Acyrthosiphon pisum for which genomic resources are now available have allowed the identification of several genetic programs regulated by photoperiod shortening. Unexpectedly, one of these genetic programs concerns cuticle proteins and cuticle structure. This opens new tracks for investigations and poses new hypotheses on the link between cuticle modification and neuronal signalisation of photoperiod in aphids in response to seasonal photoperiodism. This review focuses on the description of cuticular protein genes in the pea aphid and their regulation during the change of reproductive mode.


Subject(s)
Aphids/metabolism , Gene Expression Regulation , Insect Proteins/metabolism , Photoperiod , Animals , Aphids/genetics , Female , Insect Proteins/genetics , Male , Seasons
14.
J Mol Evol ; 65(4): 413-24, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17928936

ABSTRACT

The aim of this study was to analyze patterns of nucleotidic composition and codon usage in the pea aphid genome (Acyrthosiphon pisum). A collection of 60,000 expressed sequence tags (ESTs) in the pea aphid has been used to automatically reconstruct 5809 coding sequences (CDSs), based on similarity with known proteins and on coding style recognition. Reconstructions were manually checked for ribosomal proteins, leading to tentatively reconstruct the nea-complete set of this category. Pea aphid coding sequences showed a shift toward AT (especially at the third codon position) compared to drosophila homologues. Genes with a putative high level of expression (ribosomal and other genes with high EST support) remained more GC3-rich and had a distinct codon usage from bulk sequences: they exhibited a preference for C-ending codons and CGT (for arginine), which thus appeared optimal for translation. However, the discrimination was not as strong as in drosophila, suggesting a reduced degree of translational selection. The space of variation in codon usage for A. pisum appeared to be larger than in drosophila, with a substantial fraction of genes that remained GC3-rich. Some of those (in particular some structural proteins) also showed high levels of codon bias and a very strong preference for C-ending codons, which could be explained either by strong translational selection or by other mechanisms. Finally, genomic traces were analyzed to build 206 fragments containing a full CDS, which allowed studying the correlations between GC contents of coding and those of noncoding (flanking and introns) sequences.


Subject(s)
Aphids/genetics , Codon , Expressed Sequence Tags , Genetic Heterogeneity , Animals , Genome, Insect
15.
Bioinformatics ; 23(6): 783-4, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17237053

ABSTRACT

UNLABELLED: AphidBase aims to (i) store recently acquired genomic resources on aphids and (ii) compare them to other insect resources as functional annotation tools. For that, the Drosophila melanogaster genome has been loaded in the database using the GMOD open source software for a comparison with the 17 069 pea aphid unique transcripts (contigs) and the 13 639 gene transcripts of the Anopheles gambiae. Links to FlyBase and A.gambiae Entrez databases allow a rapid characterization of the putative functions of the aphid sequences. Text mining of the D.melanogaster literature was performed to construct a network of co-cited gene or protein names, which should facilitate functional annotation of aphid homolog sequences. AphidBase represents one of the first genomic databases for a hemipteran insect. AVAILABILITY: http://w3.rennes.inra.fr/AphidBase.


Subject(s)
Aphids/genetics , Chromosome Mapping/methods , Databases, Genetic , Information Storage and Retrieval/methods , Transcription Factors/genetics , Animals , Database Management Systems
16.
Genome Biol ; 7(3): R21, 2006.
Article in English | MEDLINE | ID: mdl-16542494

ABSTRACT

Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.


Subject(s)
Aphids/genetics , Transcription, Genetic , Animals , Aphids/classification , Aphids/pathogenicity , Base Composition , Base Sequence , DNA/chemistry , DNA/genetics , DNA, Complementary/genetics , Expressed Sequence Tags , Gene Library , Microsatellite Repeats , Pisum sativum/parasitology , Phylogeny , Plant Diseases/parasitology , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...