Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chemphyschem ; : e202400507, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801730
2.
ACS Appl Mater Interfaces ; 16(13): 16203-16212, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506506

ABSTRACT

Lithium-mediated ammonia synthesis (LiMAS) is an emerging electrochemical method for NH3 production, featuring a meticulous three-step process involving Li+ electrodeposition, Li nitridation, and Li3N protolysis. The essence lies in the electrodeposition of Li+, a critical phase demanding current oscillations to fortify the solid-electrolyte interface (SEI) and ensure voltage stability. This distinctive operational cadence orchestrates Li nitridation and Li3N protolysis, profoundly influencing the NH3 selectivity. Increasing N2 pressure enhances the NH3 faradaic efficiency (FE) up to 20 bar, beyond which proton availability controls selectivity between Li nitridation and Li3N protolysis. The proton donor, typically alcohols, is a key factor, with 1-butanol observed to yield the highest NH3 FE. Counterion in the Li salt is also observed to be significant, with larger anions (e.g., exemplified by BF4-) improving SEI stability, directly impacting LiMAS efficacy. Notably, we report a peak NH3 FE of ∼70% and an NH3 current density of ∼-100 mA/cm2 via a delicate balance of process conditions, encompassing N2 pressure, proton donor, Li salt, and their respective concentrations. In contrast to the recent literature, we find that the theoretical maximum energy efficiency of LiMAS hinges significantly on the proton source, with LiMAS utilizing H2O calculated to have a maximum achievable energy efficiency of 27.8%. Despite inherent challenges, a technoeconomic analysis suggests high-pressure LiMAS to be more feasible than both ambient LiMAS and a modified green Haber-Bosch process. Our analysis finds that, at a 100 mA/cm2 NH3 current density and a 6 V cell voltage, LiMAS delivers green NH3 at an all-inclusive cost of $456 per ton, significantly lower than conventional cost barriers. Our economic analysis underscores high-pressure LiMAS as a potentially transformative technology that may revolutionize large-scale NH3 production, paving the way for a sustainable future.

3.
Chemphyschem ; 25(13): e202300933, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38517585

ABSTRACT

Improving our fundamental understanding of complex heterocatalytic processes increasingly relies on electronic structure simulations and microkinetic models based on calculated energy differences. In particular, calculation of activation barriers, usually achieved through compute-intensive saddle point search routines, remains a serious bottleneck in understanding trends in catalytic activity for highly branched reaction networks. Although the well-known Brønsted-Evans-Polyani (BEP) scaling - a one-feature linear regression model - has been widely applied in such microkinetic models, they still rely on calculated reaction energies and may not generalize beyond a single facet on a single class of materials, e. g., a terrace sites on transition metals. For highly branched and energetically shallow reaction networks, such as electrochemical CO2 reduction or wastewater remediation, calculating even reaction energies on many surfaces can become computationally intractable due to the combinatorial explosion of states that must be considered. Here, we investigate the feasibility of activation barrier prediction without knowledge of the reaction energy using linear and nonlinear machine learning (ML) models trained on a new database of over 500 dehydrogenation activation barriers. We also find that inclusion of the reaction energy significantly improves both classes of ML models, but complex nonlinear models can achieve performance similar to the simplest BEP scaling when predicting activation barriers on new systems. Additionally, inclusion of the reaction energy significantly improves generalizability to new systems beyond the training set. Our results suggest that the reaction energy is a critical feature to consider when building models to predict activation barriers, indicating that efforts to reliably predict reaction energies through, e. g., the Open Catalyst Project and others, will be an important route to effective model development for more complex systems.

4.
Chem Sci ; 15(13): 4996-5008, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550699

ABSTRACT

The electrified aqueous/metal interface is critical in controlling the performance of energy conversion and storage devices, but an atomistic understanding of even basic interfacial electrochemical reactions challenges both experiment and computation. We report a combined simulation and experimental study of (reversible) ion-transfer reactions involved in anodic Ag corrosion/deposition, a model system for interfacial electrochemical processes generating or consuming ions. With the explicit modeling of the electrode potential and a hybrid implicit-explicit solvation model, the density functional theory calculations produce free energy curves predicting thermodynamics, kinetics, partial charge profiles, and reaction trajectories. The calculated (equilibrium) free energy barriers (0.2 eV), and their asymmetries, agree with experimental activation energies (0.4 eV) and transfer coefficients, which were extracted from temperature-dependent voltage-step experiments on Au-supported, Ag-nanocluster substrates. The use of Ag nanoclusters eliminates the convolution of the kinetics of Ag+(aq.) generation and transfer with those of nucleation or etch-pit formation. The results indicate that the barrier is controlled by the bias-dependent competition between partial solvation of the incipient ion, metal-metal bonding, and electrostatic stabilization by image charge, with the latter two factors weakened by stronger positive biases. We also report simulations of the bias-dependence of defect generation relevant to nucleating corrosion by removing an atom from a perfect Ag(100) surface, which is predicted to occur via a vacancy-adatom intermediate. Together, these experiments and calculations provide the first validated, accurate, molecular model of the central steps that govern the rates of important dissolution/deposition reactions broadly relevant across the energy sciences.

5.
Angew Chem Int Ed Engl ; 62(10): e202215938, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36507657

ABSTRACT

Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen-containing compounds (i.e., N2 , NH3 , and NO3 - ) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2 RR), nitrogen oxidation reaction (N2 OR), nitrate reduction reaction (NO3 RR), and ammonia oxidation reaction (NH3 OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen-based economy.

6.
J Phys Chem Lett ; 13(25): 5719-5725, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35713626

ABSTRACT

Determining ab initio potential-dependent energetics is critical to the investigation of mechanisms for electrochemical reactions. While methodology for evaluating reaction thermodynamics is established, simulation techniques for the corresponding kinetics is still a major challenge owing to a lack of potential control, finite cell size effects, or computational expense. In this work, we develop a model that allows for computing electrochemical activation energies from just a handful of density functional theory (DFT) calculations. The sole input into the model are the atom-centered forces obtained from DFT calculations performed on a homogeneous grid composed of varying field strengths. We show that the activation energies as a function of the potential obtained from our model are consistent for different supercell sizes and proton concentrations for a range of electrochemical reactions.


Subject(s)
Quantum Theory , Kinetics , Thermodynamics
7.
Phys Chem Chem Phys ; 23(15): 9394-9406, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33885049

ABSTRACT

Density Functional Theory (DFT) is currently the most tractable choice of theoretical model used to understand the mechanistic pathways for electrocatalytic processes such as CO2 or CO reduction. Here, we assess the performance of two DFT functionals designed specifically to describe surface interactions, RTPSS and RPBE, as well as two popular meta-GGA functionals, SCAN and B97M-rV, that have not been a priori optimized for better interfacial properties. We assess all four functionals against available experimental data for prediction of bulk and bare surface properties on four electrocatalytically relevant metals, Au, Ag, Cu, and Pt, and for binding CO to surfaces of these metals. To partially mitigate issues such as thermal and anharmonic corrections associated with comparing computations with experiments, molecular benchmarks against high level quantum chemistry are reported for CO complexes with Au, Ag, Cu and Pt atoms, as well as the CO-water complex and the water dimer. Overall, we find that the surface modified RPBE functional performs reliably for many of the benchmarks examined here, and the meta-GGA functionals also show promising results. Specifically B97M-rV predicts the correct site preference for CO binding on Ag and Au (the only functional tested here to do so), while RTPSS performs well for surface relaxations and binding of CO on Pt and Cu.

8.
J Chem Phys ; 152(14): 144703, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295363

ABSTRACT

Determining the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces, since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, *OH, and *OOH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum solvation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differ across surfaces. Thus, we determine solvation energies of adsorbates to be non-transferable between metal surfaces, in contrast to standard practice.

9.
Phys Chem Chem Phys ; 22(16): 9040-9045, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32296799

ABSTRACT

The competition between the hydrogen evolution reaction and the electrochemical reduction of carbon dioxide to multi-carbon products is a well-known challenge. In this study, we present a simple micro-kinetic model of these competing reactions over a platinum catalyst under a strong reducing potential at varying proton concentrations in a non-aqueous solvent. The model provides some insight into the mechanism of reaction and suggests that low proton concentration and a high fraction of stepped sites is likely to improve selectivity to multi-carbon products.

10.
Phys Chem Chem Phys ; 22(13): 6964-6969, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32186292

ABSTRACT

Rational design of materials that efficiently convert electrical energy into chemical bonds will ultimately depend on a thorough understanding of the electrochemical interface at the atomic level. Towards this goal, the use of density functional theory (DFT) at the generalized gradient approximation (GGA) level has been applied widely in the past 15 years. In the calculation of electrochemical reaction energetics using GGA-DFT, it is frequently implicitly assumed that ions in the Helmholtz plane have unit charge. However, the ion charge is observed to be fractional near the interface through both a capacitor model and through Bader charge partitioning. In this work, we show that this spurious charge transfer can be effectively mitigated by continuum charging of the electrolyte. We then show that, similar to hydronium, the observed fractional charge of hydroxide is not due to a GGA level self-interaction error, as the partial charge is observed even when using hybrid level exchange-correlation functionals.

11.
J Chem Theory Comput ; 15(12): 6895-6906, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31689089

ABSTRACT

One of the major open challenges in ab initio simulations of the electrochemical interface is the determination of electrochemical barriers under a constant driving force. Existing methods to do so include extrapolation techniques based on fully explicit treatments of the electrolyte, as well as implicit solvent models which allow for a continuous variation in electrolyte charge. Emerging hybrid continuum models have the potential to revolutionize the field, since they account for the electrolyte with little computational cost while retaining some explicit electrolyte, representing a "best of both worlds" method. In this work, we present a unified approach to determine reaction energetics from fully explicit, implicit, and hybrid treatments of the electrolyte based on a new multicapacitor model of the electrochemical interface. A given electrode potential can be achieved by a variety of interfacial structures; a crucial insight from this work is that the effective surface charge gives a good proxy of the local potential, the true driving force of electrochemical processes. In contrast, we show that the traditionally considered work function gives rise to multivalued functions depending on the simulation cell size. Furthermore, we show that the reaction energetics are largely insensitive to the countercharge distribution chosen in hybrid implicit/explicit models, which means that any of the myriad implicit electrolyte models can be equivalently applied. This work thus paves the way for the accurate treatment of ab initio reaction energetics of general surface electrochemical processes using both implicit and explicit electrolytes.

12.
Chemphyschem ; 20(22): 3074-3080, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31317628

ABSTRACT

Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry.

13.
ChemSusChem ; 12(15): 3491-3500, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31095900

ABSTRACT

Water electrolysis to form hydrogen as a solar fuel requires highly effective catalysts. In this work, theoretical and experimental studies are performed on the activity and stability of Ni-Mo cathodes for this reaction. Density functional theory studies show various Ni-Mo facets to be active for the hydrogen evolution reaction, Ni segregation to be thermodynamically favorable, and Mo vacancy formation to be favorable even without an applied potential. Electrolyte effects on the long-term stability of Ni-Mo cathodes are determined. Ni-Mo is compared before and after up to 100 h of continuous operation. It is shown that Ni-Mo is unstable in alkaline media, owing to Mo leaching in the form of MoO4 2- , ultimately leading to a decrease in absolute overpotential. It is found that the electrolyte, the alkali cations, and the pH all influence Mo leaching. Changing the cation in the electrolyte from Li to Na to K influences the surface segregation of Mo and pushes the reaction towards Mo dissolution. Decreasing the pH decreases the OH- concentration and in this manner inhibits Mo leaching. Of the electrolytes studied, in terms of stability, the best to use is LiOH at pH 13. Thus, a mechanism for Mo leaching is presented alongside ways to influence the stability and make the Ni-Mo material more viable for renewable energy storage in chemical bonds.

14.
Nat Commun ; 9(1): 3202, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30097564

ABSTRACT

A detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | H2O and Al(111) | H2O interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (EF). The observed fractional charge in the absence of frontier band misalignment arises from a significant overlap between the proton and the electron density from the metal surface, and results in an energetic difference between protons in bulk solution and those in the outer Helmholtz plane.

15.
Risk Anal ; 23(6): 1239-55, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14641898

ABSTRACT

Human health risk assessments use point values to develop risk estimates and thus impart a deterministic character to risk, which, by definition, is a probability phenomenon. The risk estimates are calculated based on individuals and then, using uncertainty factors (UFs), are extrapolated to the population that is characterized by variability. Regulatory agencies have recommended the quantification of the impact of variability in risk assessments through the application of probabilistic methods. In the present study, a framework that deals with the quantitative analysis of uncertainty (U) and variability (V) in target tissue dose in the population was developed by applying probabilistic analysis to physiologically-based toxicokinetic models. The mechanistic parameters that determine kinetics were described with probability density functions (PDFs). Since each PDF depicts the frequency of occurrence of all expected values of each parameter in the population, the combined effects of multiple sources of U/V were accounted for in the estimated distribution of tissue dose in the population, and a unified (adult and child) intraspecies toxicokinetic uncertainty factor UFH-TK was determined. The results show that the proposed framework accounts effectively for U/V in population toxicokinetics. The ratio of the 95th percentile to the 50th percentile of the annual average concentration of the chemical at the target tissue organ (i.e., the UFH-TK) varies with age. The ratio is equivalent to a unified intraspecies toxicokinetic UF, and it is one of the UFs by which the NOAEL can be divided to obtain the RfC/RfD. The 10-fold intraspecies UF is intended to account for uncertainty and variability in toxicokinetics (3.2x) and toxicodynamics (3.2x). This article deals exclusively with toxicokinetic component of UF. The framework provides an alternative to the default methodology and is advantageous in that the evaluation of toxicokinetic variability is based on the distribution of the effective target tissue dose, rather than applied dose. It allows for the replacement of the default adult and children intraspecies UF with toxicokinetic data-derived values and provides accurate chemical-specific estimates for their magnitude. It shows that proper application of probability and toxicokinetic theories can reduce uncertainties when establishing exposure limits for specific compounds and provide better assurance that established limits are adequately protective. It contributes to the development of a probabilistic noncancer risk assessment framework and will ultimately lead to the unification of cancer and noncancer risk assessment methodologies.


Subject(s)
Models, Biological , Pharmacokinetics , Toxicology/statistics & numerical data , Adolescent , Adult , Aged , Body Weight , Cardiac Output , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Statistical , Monte Carlo Method , Motor Activity , Organ Size , Respiration , Risk Assessment
16.
Article in En | Desastres -Disasters- | ID: des-9507

ABSTRACT

Galaxy Airlines Flight 203 crashed following takeoff from Reno-Cannon International Airport on 21 Jan. 1985. Sixty-eight persons on board the aircraft perished in the initial crash and resultant fire which followed. Two victims expired as a result of crash injuries within subsequent days and one passenger survived. A community disaster response plan was in place and had been practiced by local government agencies before this incident. The successes of this preplanned response, as well as methods of actual recovery, identification, and examination of victims is presented (AU)


Subject(s)
Accidents, Aviation , Forensic Medicine , United States , Disaster Planning , Forensic Dentistry
SELECTION OF CITATIONS
SEARCH DETAIL
...