Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(31): 8229-8234, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716910

ABSTRACT

Thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily that act as ligand-dependent transcription factors. Here we identified the ten-eleven translocation protein 3 (TET3) as a TR interacting protein increasing cell sensitivity to T3. The interaction between TET3 and TRs is independent of TET3 catalytic activity and specifically allows the stabilization of TRs on chromatin. We provide evidence that TET3 is required for TR stability, efficient binding of target genes, and transcriptional activation. Interestingly, the differential ability of different TRα1 mutants to interact with TET3 might explain their differential dominant activity in patients carrying TR germline mutations. So this study evidences a mode of action for TET3 as a nonclassical coregulator of TRs, modulating its stability and access to chromatin, rather than its intrinsic transcriptional activity. This regulatory function might be more general toward nuclear receptors. Indeed, TET3 interacts with different members of the superfamily and also enhances their association to chromatin.


Subject(s)
Chromatin/metabolism , Dioxygenases/metabolism , Thyroid Hormone Receptors alpha/metabolism , Catalytic Domain , Chromatin/genetics , Dioxygenases/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Immunoprecipitation , Mutation , Nitriles/pharmacology , Protein Interaction Domains and Motifs , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Thiazoles/pharmacology , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Transcription, Genetic , Ubiquitination
2.
Proc Natl Acad Sci U S A ; 111(42): 15108-13, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288732

ABSTRACT

Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Receptors, Estrogen/metabolism , rhoA GTP-Binding Protein/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cullin Proteins/metabolism , Extracellular Matrix/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness , Neoplasm Metastasis , Prognosis , Protein Stability , Protein Structure, Tertiary , Proteins/metabolism , Wound Healing , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...