Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1355405, 2024.
Article in English | MEDLINE | ID: mdl-38720891

ABSTRACT

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Subject(s)
Myeloid-Derived Suppressor Cells , Sepsis , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Sepsis/immunology , Transcriptome , Male , Female , Cell Differentiation/immunology , Gene Expression Profiling
2.
Biol Direct ; 19(1): 33, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689301

ABSTRACT

BACKGROUND: The Advanced Plant Experiment-04 - Epigenetic Expression (APEX-04-EpEx) experiment onboard the International Space Station examined the spaceflight-altered cytosine methylation in two genetic lines of Arabidopsis thaliana, wild-type Col-0 and the mutant elp2-5, which is deficient in an epigenetic regulator Elongator Complex Subunit 2 (ELP2). Whole-genome bisulfite sequencing (WGBS) revealed distinct spaceflight associated methylation differences, presenting the need to explore specific space-altered methylation at single-molecule resolution to associate specific changes over large regions of spaceflight related genes. To date, tools of multiplexed targeted DNA methylation sequencing remain limited for plant genomes. RESULTS: To provide methylation data at single-molecule resolution, Flap-enabled next-generation capture (FENGC), a novel targeted multiplexed DNA capture and enrichment technique allowing cleavage at any specified sites, was applied to survey spaceflight-altered DNA methylation in genic regions of interest. The FENGC capture panel contained 108 targets ranging from 509 to 704 nt within the promoter or gene body regions of gene targets derived from spaceflight whole-genome data sets. In addition to genes with significant changes in expression and average methylation levels between spaceflight and ground control, targets with space-altered distributions of the proportion of methylated cytosines per molecule were identified. Moreover, trends of co-methylation of different cytosine contexts were exhibited in the same DNA molecules. We further identified significant DNA methylation changes in three previously biological process-unknown genes, and loss-of-function mutants of two of these genes (named as EMO1 and EMO2 for ELP2-regulated Methylation in Orbit 1 and 2) showed enhanced root growth rate. CONCLUSIONS: FENGC simplifies and reduces the cost of multiplexed, targeted, single-molecule profiling of methylation in plants, providing additional resolution along each DNA molecule that is not seen in population-based short-read data such as WGBS. This case study has revealed spaceflight-altered regional modification of cytosine methylation occurring within single DNA molecules of cell subpopulations, which were not identified by WGBS. The single-molecule survey by FENGC can lead to identification of novel functional genes. The newly identified EMO1 and EMO2 are root growth regulators which may be epigenetically involved in plant adaptation to spaceflight.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Plant Roots , Space Flight , Arabidopsis/genetics , Plant Roots/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Epigenesis, Genetic
3.
Bioinformatics ; 37(24): 4857-4859, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34125875

ABSTRACT

SUMMARY: Differential DNA methylation and chromatin accessibility are associated with disease development, particularly cancer. Methods that allow profiling of these epigenetic mechanisms in the same reaction and at the single-molecule or single-cell level continue to emerge. However, a challenge lies in jointly visualizing and analyzing the heterogeneous nature of the data and extracting regulatory insight. Here, we present methylscaper, a visualization framework for simultaneous analysis of DNA methylation and chromatin accessibility landscapes. Methylscaper implements a weighted principal component analysis that orders DNA molecules, each providing a record of the chromatin state of one epiallele, and reveals patterns of nucleosome positioning, transcription factor occupancy, and DNA methylation. We demonstrate methylscaper's utility on a long-read, single-molecule methyltransferase accessibility protocol for individual templates (MAPit-BGS) dataset and a single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) dataset. In comparison to other procedures, methylscaper is able to readily identify chromatin features that are biologically relevant to transcriptional status while scaling to larger datasets. AVAILABILITY AND IMPLEMENTATION: Methylscaper, is implemented in R (version > 4.1) and available on Bioconductor: https://bioconductor.org/packages/methylscaper/, GitHub: https://github.com/rhondabacher/methylscaper/, and Web: https://methylscaper.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mobile Applications , Nucleosomes , DNA Methylation , Chromatin , Epigenesis, Genetic , DNA
4.
Shock ; 55(5): 587-595, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33021571

ABSTRACT

BACKGROUND: Increased circulating myeloid-derived suppressor cells (MDSCs) are independently associated with poor long-term clinical outcomes in sepsis. Studies implicate subsets of MDSCs having unique roles in lymphocyte suppression; however, characterization of these cells after sepsis remains incomplete. We performed a pilot study to determine the transcriptomic landscape in MDSC subsets in sepsis using single-cell RNAseq (scRNA-seq). METHODS: A mixture of whole blood myeloid-enriched and Ficoll-enriched PBMCs from two late septic patients on post-sepsis day 21 and two control subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). RESULTS: We successfully identified the three MDSC subset clusters-granulocytic (G-), monocytic (M-), and early (E-) MDSCs. Sepsis was associated with a greater relative expansion of G-MDSCs versus M-MDSCs at 21 days as compared to control subjects. Genomic analysis between septic patients and control subjects revealed cell-specific and common differential expression of genes in both G-MDSC and M-MDSC subsets. Many of the common genes have previously been associated with MDSC proliferation and immunosuppressive function. Interestingly, there was no differential expression of several genes demonstrated in the literature to be vital to immunosuppression in cancer-induced MDSC. CONCLUSION: This pilot study successfully demonstrated that MDSCs maintain a transcriptomic profile that is immunosuppressive in late sepsis. Interestingly, the landscape in chronic critical illness is partially dependent on the original septic insult. Preliminary data would also indicate immunosuppressive MDSCs from late sepsis patients appear to have a somewhat unique transcriptome from cancer and/or other inflammatory diseases.


Subject(s)
Myeloid-Derived Suppressor Cells , RNA-Seq , Sepsis/genetics , Single-Cell Analysis , Transcriptome , Humans , Pilot Projects
5.
PLoS Biol ; 18(1): e3000595, 2020 01.
Article in English | MEDLINE | ID: mdl-31961851

ABSTRACT

Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male-female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex.


Subject(s)
Drosophila Proteins/physiology , Drosophila/genetics , Drosophila/metabolism , Lipase/physiology , Lipid Metabolism/genetics , Lipolysis/genetics , Sex Characteristics , Animals , Animals, Genetically Modified , Energy Metabolism/genetics , Female , Lipase/genetics , Lipase/metabolism , Male , Micronutrients/metabolism , Triglycerides/metabolism
6.
Crit Care ; 23(1): 355, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31722736

ABSTRACT

BACKGROUND: Sepsis is an increasingly significant challenge throughout the world as one of the major causes of patient morbidity and mortality. Central to the host immunologic response to sepsis is the increase in circulating myeloid-derived suppressor cells (MDSCs), which have been demonstrated to be present and independently associated with poor long-term clinical outcomes. MDSCs are plastic cells and potentially modifiable, particularly through epigenetic interventions. The objective of this study was to determine how the suppressive phenotype of MDSCs evolves after sepsis in surgical ICU patients, as well as to identify epigenetic differences in MDSCs that may explain these changes. METHODS: Circulating MDSCs from 267 survivors of surgical sepsis were phenotyped at various intervals over 6 weeks, and highly enriched MDSCs from 23 of these samples were co-cultured with CD3/CD28-stimulated autologous T cells. microRNA expression from enriched MDSCs was also identified. RESULTS: We observed that MDSC numbers remain significantly elevated in hospitalized sepsis survivors for at least 6 weeks after their infection. However, only MDSCs obtained at and beyond 14 days post-sepsis significantly suppressed T lymphocyte proliferation and IL-2 production. These same MDSCs displayed unique epigenetic (miRNA) expression patterns compared to earlier time points. CONCLUSIONS: We conclude that in sepsis survivors, immature myeloid cell numbers are increased but the immune suppressive function specific to MDSCs develops over time, and this is associated with a specific epigenome. These findings may explain the chronic and persistent immune suppression seen in these subjects.


Subject(s)
Epigenesis, Genetic/physiology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Sepsis/complications , Time Factors , Aged , Epigenesis, Genetic/genetics , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Male , MicroRNAs/immunology , MicroRNAs/metabolism , Middle Aged , Sepsis/physiopathology
7.
PLoS One ; 9(1): e86494, 2014.
Article in English | MEDLINE | ID: mdl-24466119

ABSTRACT

The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees' health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees' health. However, numerically minor taxa might also influence the bees' efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees' health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior.


Subject(s)
Bacteria/classification , Bees/microbiology , Bees/physiology , Gastrointestinal Tract/microbiology , Plant Nectar , Pollination , Animals , Microbiota
8.
Proc Biol Sci ; 280(1752): 20122601, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23222453

ABSTRACT

Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such 'third-party' species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant-pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.


Subject(s)
Birds/physiology , Gluconobacter/physiology , Metschnikowia/physiology , Mimulus/microbiology , Mimulus/physiology , Pollination , Symbiosis , Animals , California , DNA, Bacterial/genetics , Feeding Behavior , Flowers/microbiology , Flowers/physiology , Gluconobacter/classification , Gluconobacter/genetics , Gluconobacter/isolation & purification , Metschnikowia/classification , Metschnikowia/genetics , Metschnikowia/isolation & purification , Molecular Sequence Data , Phylogeny , Plant Nectar/chemistry , Plant Nectar/metabolism , RNA, Fungal/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Reproduction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...