Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(6): 1512-1515, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489438

ABSTRACT

The selective spatial mode excitation of a bi-dimensional grating-coupled micro-cavity called a cavity resonator integrated grating filter (CRIGF) is reported using an incident beam shaped to reproduce the theoretical emission profiles of the device in one and subsequently two dimensions. In both cases, the selective excitation of modes up to order 10 (per direction) is confirmed by responses exhibiting one (respectively two) spectrally narrowband resonance(s) with a good extinction of the other modes, the latter being shown to depend on the parity and order(s) of the involved modes. These results pave the way toward the demonstration of multi-wavelength spatially selective reflectors or fiber-to-waveguide couplers. Also, subject to an appropriate choice of the materials constituting the CRIGF, this work can be extended to obtain mode-selectable laser emission or nonlinear frequency conversion.

2.
Opt Express ; 31(17): 27274-27286, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710806

ABSTRACT

We experimentally demonstrate critical coupling in miniature grating-coupled resonators known as cavity-resonant integrated-grating filters (CRIGFs). Using previously proposed asymmetric grating coupler designs for non-linear CRIGFs, and introducing a dedicated variant of a coupled-modes theory model to estimate physical properties out of the measured reflection and transmission characteristics of these resonators, we demonstrate fine control over the in-and out-coupling rate to the resonator while keeping constant both the internal losses and the resonant wavelength. Furthermore, the critical coupling condition is also observed to coincide with the maximum enhancement of the second harmonic generation signal.

3.
Opt Express ; 30(14): 25390-25399, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237070

ABSTRACT

In this paper, dielectric Cavity-Resonant Integrated-Grating Filters (CRIGFs) are numerically optimized to achieve extremely high-quality factors, by optimizing the cavity in/out-coupling rate and by introducing apodizing mode-matching sections to reduce scattering losses. Q-factors ranging between 0.1 and 50 million are obtained and two different domains are distinguished, as a function of the perturbation parameter which controls the cavity in/out-coupling rate. When the cavity coupling Q-factor is lower than the Q-factor of the uncoupled Fabry-Perot cavity, corresponding to the over-coupling regime, the reflectivity response exhibits a high resonance maximum. On the contrary, in the under-coupling regime the resonant reflectivity maximum is much weaker since the scattering losses of the uncoupled cavity dominate. Between these two domains, the so-called critical coupling condition leads to very strong field enhancement inside the device, reaching up to 104 times the incident field amplitude. This theoretical work paves the way towards the practical implementation of CRIGFs with much higher Q-factors than currently demonstrated, potentially reaching performance on a par with other resonators such as photonic crystal cavities or whispering gallery mode resonators. These results can serve to optimize the design of narrow-band planar grating filters, particularly for application in non-linear optics.

4.
Opt Express ; 30(21): 38789-38803, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258436

ABSTRACT

We report on the design of cavity-resonator integrated grating couplers for second-harmonic generation. The key point is that the base pattern of our grating coupler (GC) is made of two ridges with different widths (bi-atom). Thus, we reach extremely high Q-factors (above 105) with structures whose fabrication is not challenging, since the bi-atom base pattern is close to that of the surrounded distributed Bragg reflectors (DBR). Yet, the parameters of the structure have to be chosen cautiously to reduce the transition losses between each section (GC, DBR). We numerically demonstrate conversion efficiencies η of several tenths per Watt, even doubled when we include a phase-matching grating within the structuration. Such efficiencies are comparable to those obtained with waveguides and nano-resonators.

5.
Opt Express ; 30(10): 16669-16676, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221504

ABSTRACT

Cavity resonator grating filters (CRIGFs) integrated on lithium niobate on insulator (LNOI) with electrical tuning elements are reported. The resonance wavelength of the filters is in the 780 nm range. Integrated thermo-optical tuning range of 2.5 nm is measured using integrated resistors, whilst a 0.7 nm electro-optical tuning range using capacitive metallic pads is achieved with ±400V drive voltage.

6.
Nanotechnology ; 34(1)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36179662

ABSTRACT

Active suspended membranes are an ideal test-bench for experimenting with novel laser geometries and principles. We show that adding thin AlGaAs barrier near the top and bottom Air/GaAs interfaces of the membrane significantly reduces the carriers non-radiative recombinations and decreases the threshold of test photonic crystal test lasers. We review the existing literature on photonic crystal membrane fabrication and propose an overview of the significant defects that can be induced by each fabrication step. Finally we propose a complete processing scheme that overcome most of these defects.

7.
Appl Opt ; 61(32): 9562-9568, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36606892

ABSTRACT

Visible optical switches embedding a spin-crossover thin film and exploiting the frustrated total internal reflection operation principle are studied and optimized numerically with a view to obtain broadband high-contrast devices. A practical implementation using uncoated SF11 prisms embedding a 1-µm-thick layer of iron-triazolyl-borate complex as the thermo-active phase-change material is shown to support p-polarized modulation with contrast in excess of 90% over a spectral bandwidth greater than 270 nm and over an angular acceptance bandwidth of 0.45°, surpassing the performance achievable with optically resonant devices.

8.
Opt Express ; 29(21): 33380-33397, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809151

ABSTRACT

Mesoscopic Photonic Crystals (MPhCs) are composed of alternating natural or artificial materials with compensating spatial dispersion. In their simplest form, as presented here, MPhCs are composed by the periodic repetition of a MPhC supercell made of a short slab of bulk material and a short slab of Photonic Crystal (PhCs). Therefore, MPhCs present a multiscale periodicity with a subwavelength periodicity within each PhC slab and with a few-wavelength periodicity for its supercell. Thanks to this mesoscopic structure, MPhCs allow the self-collimation of light, through a mechanism called mesoscopic self-collimation (MSC), along both directions of high symmetry and directions oblique with respect to the MPhCs slab interfaces. Here, we propose a new design method useful for conceiving MPhCs that allow MSC under oblique incidence, avoiding in-plane scattering and ensuring propagation via purely guided modes, without out-of-plane radiation losses. In addition, the proposed method allows a systematic search for optimal MSC structures, which also simultaneously satisfy the impedance matching condition at MPhC interfaces, thus reducing the effect of multiple reflections between bulk-PhC interfaces. The proposed design method has the advantage of an extreme analytical simplicity and it allows direct design of oblique-incidence MPhC structures. Its accuracy is validated through Finite Difference Time Domain simulations and the MSC performances of the designed structures are evaluated, in terms of angular direction, beam waist, overall transmittance, and through discussion of a Figure of Merit that accounts for residual beam curvature. This simple yet powerful method can pave the way for the design of advanced MSC-based photonic interconnects and circuits that are immune to crosstalk and out-of-plane losses.

9.
Opt Express ; 27(21): 30287-30296, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684278

ABSTRACT

Self-collimation (SC) and mesoscopic self-collimation (MSC) have been successfully demonstrated along the directions of high symmetry of photonic crystals. Indeed, wide angular acceptances are obtained only in these directions which offer extremely flat isofrequencies. In this article, we numerically demonstrate that mesoscopic self-collimation with large angular acceptance can be achieved along arbitrary directions that are not of high symmetry. In particular, we propose a simple method that allows to easily find all the non-trivial collimation directions and corresponding frequencies. Thanks to the double periodicity of the mesoscopic crystal, these solutions can be effectively tailored in terms of direction and frequency. Moreover, non-trivial MSC solutions can be found well below the light cone. These MSC features open up the possibility of designing complex systems by combining different configurations, such as high reflection (HR) or anti reflection (AR) ones, or active materials.

10.
Opt Lett ; 44(21): 5198-5201, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31674967

ABSTRACT

We demonstrate numerically and experimentally second-harmonic generation (SHG) in a cavity resonator integrated grating filter (CRIGF, a planar cavity resonator made of Bragg grating reflectors) around 1550 nm. SHG is modeled numerically for several different systems, including a thin plane layer of LiNbO3 without and with a grating coupler to excite a waveguide mode. We demonstrate that when the waveguide mode is confined to a CRIGF, designed to work with focused incident beams, the SHG power is increased more than 30 times, compared to the case of a single grating coupler used with an almost collimated pump beam.

11.
Opt Express ; 25(16): 19275-19280, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041120

ABSTRACT

In this paper, we demonstrate that buried oxide-confined waveguides can be formed using a lateral oxidation process carried out through a discrete set of small-diameter via-holes instead of the conventional scheme where the oxidation starts from the edges of etched mesas. The via-hole oxidation is shown to lead to straight waveguides with smooth oxide/semiconductor interfaces and whose propagation losses are similar to one obtained using the standard process but with the advantage of maintaining a quasi-planar wafer surface. It thereby paves the way towards a simplification of the fabrication of III-V-semiconductor-oxide photonic devices.

12.
J Opt Soc Am A Opt Image Sci Vis ; 34(4): 657-665, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28375336

ABSTRACT

Zero-contrast gratings (ZCG) can be used to implement narrow bandpass transmission filters. However, they suffer from poor angular tolerance, which hinders their use in pixelated applications. Combining ZCG with double-corrugation grating, we increase the resonance width and angular tolerance of the filter by more than 1 order of magnitude. Filters tunable around 4.6 µm with more than 90% transmission and compatibility with 140 µm pixel size are demonstrated.

13.
Phys Rev Lett ; 108(3): 037401, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400783

ABSTRACT

We demonstrate a mesoscopic self-collimation effect in photonic crystal superlattices consisting of a periodic set of all-positive index 2D photonic crystal and homogeneous layers. We develop an electromagnetic theory showing that diffraction-free beams are observed when the curvature of the optical dispersion relation is properly compensated for. This approach allows us to combine slow-light regime together with self-collimation in photonic crystal superlattices presenting an extremely low filling ratio in air.

SELECTION OF CITATIONS
SEARCH DETAIL
...