Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 26(4): 045706, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25567743

ABSTRACT

A plasma-enhanced chemical vapor deposition (PECVD) process was adapted to alter the growth of multiwall carbon nanotubes (MWCNTs) so that graphene sheets grow out of their tips. Gold nanoparticle (Au-NP) decoration of graphenated MWCNTs (g-MWCNTs) was obtained by subsequent decoration by a pulsed laser deposition (PLD) process. By varying the number of laser ablation pulses (N(Lp)) in the PLD process, we were able to control the size of the gold nanoparticles and the surface coverage of the decorated g-MWCNTs. The presence of Au-NPs, preferentially located at the tip of the g-MWCNTs emitters, is shown to significantly improve the field electron emission (FEE) properties of the global g-MWCNT/Au-NP nanohybrid films. Indeed, the electric field needed to extract a current density of 0.1 µA cm(-)(2) from the g-MWCNT/Au-NP films was decreased from 2.68 V µm(-1) to a value as low as 0.96 V µm(-1). On the other hand, UV photoelectron spectroscopy (UPS) characterization revealed a decrease in the global work function of the Au-decorated g-MWCNT nanohybrids compared to that of bare g-MWCNT emitters. Surprisingly, the work function of g-MWCNT was found to decrease from 4.9 to 4.7 eV with the addition of Au-NPs-a value lower than the work function of both materials worth 5.2 and 4.9 eV for gold and g-MWCNT, respectively. Our results show that the N(Lp) dependence of the FEE characteristics of the g-MWCNT/Au-NP emitters correlates well with their work function changes. Fowler-Nordheim-theory-based calculations suggest that the significant FEE enhancement of the emitters is also caused by the Au-NPs acting as nanoscale electric field enhancers.

2.
Nanotechnology ; 23(21): 215206, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22551529

ABSTRACT

We report on the KrF-laser ablation synthesis, purification and photocurrent generation properties of single-wall carbon nanotubes (SWCNTs). The thermally purified SWCNTs are integrated into hybrid photovoltaic (PV) devices by spin-coating them onto n-Si substrates. These novel SWCNTs/n-Si hybrid devices are shown to generate significant photocurrent (PC) over the entire 250-1050 nm light spectrum with external quantum efficiencies (EQE) reaching up to ~23%. Our SWCNTs/n-Si hybrid devices are not only photoactive in the traditional spectral range of Si solar cells, but generate also significant PC in the UV domain (below 400 nm). This wider spectral response is believed to be the result of PC generation from both the SWCNTs themselves and the tremendous number of local p-n junctions created at the nanotubes/Si interface. To assess the prevalence of these two contributions, the EQE spectra and J-V characteristics of these hybrid devices were investigated in both planar and top-down configurations, as a function of SWCNTs' film thickness. A sizable increase in EQE in the near UV with respect to the silicon is observed in both configurations, with a more pronounced UV photoresponse in the planar mode, confirming thereby the role of SWCNTs in the photogeneration process. The PC generation is found to reach its maximum for an optimal the SWCNT film thickness, which is shown to correspond to the best trade-off between lowest electrical resistance and highest optical transparency. Finally, by analyzing the J-V characteristics of our SWCNTs/n-Si devices with an equivalent circuit model, we were able to point out the contribution of the various electrical components involved in the photogeneration process. The SWCNTs-based devices demonstrated here open up the prospect for their use in highly effective photovoltaics and/or UV-light sensors.


Subject(s)
Electric Power Supplies , Lasers , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Silicon/chemistry , Equipment Design , Equipment Failure Analysis , Nanotubes, Carbon/radiation effects , Particle Size , Silicon/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...