Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Clin Genet ; 105(5): 555-560, 2024 05.
Article in English | MEDLINE | ID: mdl-38287449

ABSTRACT

Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies.


Subject(s)
Homeodomain Proteins , Transcription Factors , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Homeodomain Proteins/genetics , Mutation , Mutation, Missense/genetics , Phenotype , Transcription Factors/genetics
2.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
3.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36044892

ABSTRACT

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Subject(s)
Intellectual Disability , Musculoskeletal Abnormalities , Pelger-Huet Anomaly , Cell Nucleus/genetics , Child , Chromatin , Humans , Intellectual Disability/genetics , Loss of Heterozygosity , Pelger-Huet Anomaly/genetics
4.
Nucleic Acids Res ; 50(13): 7350-7366, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35766398

ABSTRACT

The histone variant H3.3 is encoded by two distinct genes, H3f3a and H3f3b, exhibiting identical amino-acid sequence. H3.3 is required for spermatogenesis, but the molecular mechanism of its spermatogenic function remains obscure. Here, we have studied the role of each one of H3.3A and H3.3B proteins in spermatogenesis. We have generated transgenic conditional knock-out/knock-in (cKO/KI) epitope-tagged FLAG-FLAG-HA-H3.3B (H3.3BHA) and FLAG-FLAG-HA-H3.3A (H3.3AHA) mouse lines. We show that H3.3B, but not H3.3A, is required for spermatogenesis and male fertility. Analysis of the molecular mechanism unveils that the absence of H3.3B led to alterations in the meiotic/post-meiotic transition. Genome-wide RNA-seq reveals that the depletion of H3.3B in meiotic cells is associated with increased expression of the whole sex X and Y chromosomes as well as of both RLTR10B and RLTR10B2 retrotransposons. In contrast, the absence of H3.3B resulted in down-regulation of the expression of piRNA clusters. ChIP-seq experiments uncover that RLTR10B and RLTR10B2 retrotransposons, the whole sex chromosomes and the piRNA clusters are markedly enriched of H3.3. Taken together, our data dissect the molecular mechanism of H3.3B functions during spermatogenesis and demonstrate that H3.3B, depending on its chromatin localization, is involved in either up-regulation or down-regulation of expression of defined large chromatin regions.


Subject(s)
Histones , RNA, Small Interfering/metabolism , Retroelements , Spermatogenesis , Animals , Chromatin/genetics , Histones/genetics , Histones/metabolism , Male , Mice , Sex Chromosomes/metabolism
5.
Genet Med ; 23(10): 1901-1911, 2021 10.
Article in English | MEDLINE | ID: mdl-34113008

ABSTRACT

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Subject(s)
Epilepsy , Guanine Nucleotide Exchange Factors , Haploinsufficiency , Intellectual Disability , Epilepsy/genetics , Guanine Nucleotide Exchange Factors/genetics , Heterozygote , Humans , Intellectual Disability/genetics
6.
PLoS One ; 14(3): e0213266, 2019.
Article in English | MEDLINE | ID: mdl-30822319

ABSTRACT

Nucleotide sequence reagents are verifiable experimental reagents in biomedical publications, because their sequence identities can be independently verified and compared with associated text descriptors. We have previously reported that incorrectly identified nucleotide sequence reagents are characteristic of highly similar human gene knockdown studies, some of which have been retracted from the literature on account of possible research fraud. Because of the throughput limitations of manual verification of nucleotide sequences, we developed a semi-automated fact checking tool, Seek & Blastn, to verify the targeting or non-targeting status of published nucleotide sequence reagents. From previously described and unknown corpora of 48 and 155 publications, respectively, Seek & Blastn correctly extracted 304/342 (88.9%) and 1066/1522 (70.0%) nucleotide sequences and a predicted targeting/ non-targeting status. Seek & Blastn correctly predicted the targeting/ non-targeting status of 293/304 (96.4%) and 988/1066 (92.7%) of the correctly extracted nucleotide sequences. A total of 38/39 (97.4%) or 31/79 (39.2%) Seek & Blastn predictions of incorrect nucleotide sequence reagent use were correct in the two literature corpora. Combined Seek & Blastn and manual analyses identified a list of 91 misidentified nucleotide sequence reagents, which could be built upon through future studies. In summary, incorrect nucleotide sequence reagents represent an under-recognized source of error within the biomedical literature, and fact checking tools such as Seek & Blastn may help to identify papers and manuscripts affected by these errors.


Subject(s)
Algorithms , Biomedical Research , Indicators and Reagents/analysis , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Humans , Publications
7.
PLoS One ; 13(4): e0196021, 2018.
Article in English | MEDLINE | ID: mdl-29677202

ABSTRACT

Osteoblast differentiation is a highly regulated process that requires coordinated information from both soluble factors and the extracellular matrix. Among these extracellular stimuli, chemical and physical properties of the matrix are sensed through cell surface receptors such as integrins and transmitted into the nucleus to drive specific gene expression. Here, we showed that the conditional deletion of ß1 integrins in the osteo-precursor population severely impacts bone formation and homeostasis both in vivo and in vitro. Mutant mice displayed a severe bone deficit characterized by bone fragility and reduced bone mass. We showed that ß1 integrins are required for proper BMP2 dependent signaling at the pre-osteoblastic stage, by positively modulating Smad1/5-dependent transcriptional activity at the nuclear level. The lack of ß1 integrins results in a transcription modulation that relies on a cooperative defect with other transcription factors rather than a plain blunted BMP2 response. Our results point to a nuclear modulation of Smad1/5 transcriptional activity by ß1 integrins, allowing a tight control of osteoblast differentiation.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Integrin beta1/genetics , Osteoblasts/cytology , Osteogenesis , Smad1 Protein/genetics , Smad5 Protein/genetics , Animals , Cell Differentiation , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation , Gene Knockout Techniques , Homeostasis , Mice , Osteoblasts/metabolism , Signal Transduction , Transcription, Genetic
8.
Mol Cell ; 63(4): 674-685, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27499292

ABSTRACT

CENP-A is a histone variant, which replaces histone H3 at centromeres and confers unique properties to centromeric chromatin. The crystal structure of CENP-A nucleosome suggests flexible nucleosomal DNA ends, but their dynamics in solution remains elusive and their implication in centromere function is unknown. Using electron cryo-microscopy, we determined the dynamic solution properties of the CENP-A nucleosome. Our biochemical, proteomic, and genetic data reveal that higher flexibility of DNA ends impairs histone H1 binding to the CENP-A nucleosome. Substituting the 2-turn αN-helix of CENP-A with the 3-turn αN-helix of H3 results in compact particles with rigidified DNA ends, able to bind histone H1. In vivo replacement of CENP-A with H3-CENP-A hybrid nucleosomes leads to H1 recruitment, delocalization of kinetochore proteins, and significant mitotic and cytokinesis defects. Our data reveal that the evolutionarily conserved flexible ends of the CENP-A nucleosomes are essential to ensure the fidelity of the mitotic pathway.


Subject(s)
Autoantigens/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Histones/metabolism , Kinetochores/metabolism , Mitosis/physiology , Nucleosomes/metabolism , Animals , Autoantigens/genetics , Autoantigens/ultrastructure , Binding Sites , Centromere Protein A , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/ultrastructure , Cryoelectron Microscopy , Cytokinesis , DNA/chemistry , Genotype , HeLa Cells , Humans , Kinetochores/ultrastructure , Mice , Mice, Knockout , Models, Molecular , Mutation , Nucleic Acid Conformation , Nucleosomes/ultrastructure , Phenotype , Protein Binding , Protein Conformation, alpha-Helical , Structure-Activity Relationship , Transfection
9.
Proc Natl Acad Sci U S A ; 110(21): 8579-84, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23657009

ABSTRACT

The role of the mitotic phosphorylation of the amino (NH2) terminus of Centromere Protein A (CENP-A), the histone variant epigenetic centromeric marker, remains elusive. Here, we show that the NH2 terminus of human CENP-A is essential for mitotic progression and that localization of CENP-C, another key centromeric protein, requires only phosphorylation of the CENP-A NH2 terminus, and is independent of the CENP-A NH2 terminus length and amino acid sequence. Mitotic CENP-A nucleosomal complexes contain CENP-C and phosphobinding 14-3-3 proteins. In contrast, mitotic nucleosomal complexes carrying nonphosphorylatable CENP-A-S7A contained only low levels of CENP-C and no detectable 14-3-3 proteins. Direct interactions between the phosphorylated form of CENP-A and 14-3-3 proteins as well as between 14-3-3 proteins and CENP-C were demonstrated. Taken together, our results reveal that 14-3-3 proteins could act as specific mitotic "bridges," linking phosphorylated CENP-A and CENP-C, which are necessary for the platform function of CENP-A centromeric chromatin in the assembly and maintenance of active kinetochores.


Subject(s)
Autoantigens/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Kinetochores/metabolism , Mitosis/physiology , Nucleosomes/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Amino Acid Substitution , Autoantigens/genetics , Centromere Protein A , Chromosomal Proteins, Non-Histone/genetics , HeLa Cells , Humans , Mutation, Missense , Nucleosomes/genetics , Phosphorylation , Protein Structure, Tertiary
10.
Nucleic Acids Res ; 37(14): 4684-95, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19506029

ABSTRACT

In this work we have studied the properties of the novel mouse histone variant H2AL2. H2AL2 was used to reconstitute nucleosomes and the structural and functional properties of these particles were studied by a combination of biochemical approaches, atomic force microscopy (AFM) and electron cryo-microscopy. DNase I and hydroxyl radical footprinting as well as micrococcal and exonuclease III digestion demonstrated an altered structure of the H2AL2 nucleosomes all over the nucleosomal DNA length. Restriction nuclease accessibility experiments revealed that the interactions of the H2AL2 histone octamer with the ends of the nucleosomal DNA are highly perturbed. AFM imaging showed that the H2AL2 histone octamer was complexed with only approximately 130 bp of DNA. H2AL2 reconstituted trinucleosomes exhibited a type of a 'beads on a string' structure, which was quite different from the equilateral triangle 3D organization of conventional H2A trinucleosomes. The presence of H2AL2 affected both the RSC and SWI/SNF remodeling and mobilization of the variant particles. These unusual properties of the H2AL2 nucleosomes suggest a specific role of H2AL2 during mouse spermiogenesis.


Subject(s)
Histones/metabolism , Nucleosomes/chemistry , Amino Acid Sequence , Animals , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , DNA Footprinting , Deoxyribonuclease I , Exodeoxyribonucleases , Histones/chemistry , Hydroxyl Radical , Male , Mice , Micrococcal Nuclease , Microscopy, Atomic Force , Molecular Sequence Data , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Testis/metabolism , Xenopus laevis
11.
EMBO J ; 25(18): 4234-44, 2006 Sep 20.
Article in English | MEDLINE | ID: mdl-16957777

ABSTRACT

The histone variant H2A.Bbd appeared to be associated with active chromatin, but how it functions is unknown. We have dissected the properties of nucleosome containing H2A.Bbd. Atomic force microscopy (AFM) and electron cryo-microscopy (cryo-EM) showed that the H2A.Bbd histone octamer organizes only approximately 130 bp of DNA, suggesting that 10 bp of each end of nucleosomal DNA are released from the octamer. In agreement with this, the entry/exit angle of the nucleosomal DNA ends formed an angle close to 180 degrees and the physico-chemical analysis pointed to a lower stability of the variant particle. Reconstitution of nucleosomes with swapped-tail mutants demonstrated that the N-terminus of H2A.Bbd has no impact on the nucleosome properties. AFM, cryo-EM and chromatin remodeling experiments showed that the overall structure and stability of the particle, but not its property to interfere with the SWI/SNF induced remodeling, were determined to a considerable extent by the H2A.Bbd docking domain. These data show that the whole H2A.Bbd histone fold domain is responsible for the unusual properties of the H2A.Bbd nucleosome.


Subject(s)
Histones/chemistry , Histones/metabolism , Nucleosomes/metabolism , Amino Acid Sequence , Animals , Binding Sites , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , Genetic Variation , Histones/genetics , Histones/ultrastructure , In Vitro Techniques , Microscopy, Atomic Force , Molecular Sequence Data , Mutation , Protein Folding , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/ultrastructure , Xenopus laevis
12.
Mol Cell Biol ; 26(4): 1518-26, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16449661

ABSTRACT

We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker.


Subject(s)
Chromosomes/metabolism , Histones/chemistry , Histones/metabolism , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chromosomes/genetics , DNA, Complementary/genetics , Genetic Variation , Histones/genetics , In Vitro Techniques , Mitosis , Molecular Sequence Data , Nucleosomes/metabolism , Sequence Homology, Amino Acid , Xenopus/genetics , Xenopus/metabolism , Xenopus Proteins/genetics
13.
Biochemistry ; 43(35): 11196-205, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15366929

ABSTRACT

The Drosophila melanogaster (AAGAGAG)(n) satellite repeat represents up to 1.5% of the entire fly genome and may adopt non-B DNA structures such as pyrimidine triple helices. UV melting and electrophoretic mobility shift assay experiments were used to monitor the stability of intermolecular triple helices as a function of size, pH, and backbone or base modification. Three to four repeats of the heptanucleotide motif were sufficient to allow the formation of a stable complex, especially when modified TFOs were used. Unexpectedly, low concentrations (40-100 microM) of Cu(2+) were found to favor strongly pyrimidine triplex formation under near-physiological conditions. In contrast, a much higher magnesium concentration was required to stabilize these triplexes significantly, suggesting that copper may be an essential stabilizing factor for pyrimidine triplexes.


Subject(s)
Copper/chemistry , DNA, Satellite/chemistry , DNA/chemistry , Drosophila melanogaster/genetics , Nucleic Acid Conformation , Repetitive Sequences, Nucleic Acid , Animals , Base Pairing , Cations, Divalent , Electrophoretic Mobility Shift Assay , Heterochromatin/chemistry , Heterochromatin/genetics , Hydrogen-Ion Concentration , Magnesium/chemistry , Oligonucleotides/chemistry , Pyrimidine Nucleotides/chemistry , Ultraviolet Rays
14.
EMBO Rep ; 5(7): 715-20, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15192699

ABSTRACT

The histone H2ABbd is a novel histone variant of H2A with a totally unknown function. We have investigated the behaviour of the H2ABbd nucleosomes. Nucleosomes were reconstituted with recombinant histone H2ABbd and changes in their conformations at different salt concentrations were studied by analytical centrifugation. The data are in agreement with H2ABbd being less tightly bound compared with conventional H2A in the nucleosome. In addition, stable cell lines expressing either green fluorescent protein (GFP)-H2A or GFP-H2ABbd were established and the mobility of both fusions was measured by fluorescence recovery after photobleaching. We show that GFP-H2ABbd exchanges much more rapidly than GFP-H2A within the nucleosome. The reported data are compatible with a lower stability of the variant H2ABbd nucleosome compared with the conventional H2A particle.


Subject(s)
Histones/physiology , Nucleosomes/metabolism , Animals , Centrifugation , Chickens , Dose-Response Relationship, Drug , Erythrocytes/metabolism , Green Fluorescent Proteins/metabolism , Histones/chemistry , Histones/metabolism , Immunoblotting , Microscopy, Fluorescence , Recombinant Fusion Proteins/metabolism , Sodium Chloride/pharmacology , Time Factors , Transfection , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...