Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37697435

ABSTRACT

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Animals , Female , Humans , Mice , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Damage , DNA-Binding Proteins/metabolism , Exoribonucleases/metabolism , Genomic Instability , Neoplasm Recurrence, Local , R-Loop Structures , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
J Clin Invest ; 128(10): 4525-4542, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30222135

ABSTRACT

The E3 ubiquitin ligase RNF8 plays critical roles in maintaining genomic stability by promoting the repair of DNA double-strand breaks (DSBs) through ubiquitin signaling. Abnormal activation of Notch signaling and defective repair of DSBs promote breast cancer risk. Here, we found that low expression of the full-length RNF8 correlated with poor prognosis for breast cancer patients. Our data revealed that in addition to its role in the repair of DSBs, RNF8 regulated Notch1 signaling and cell-fate determination of mammary luminal progenitors. Mechanistically, RNF8 acted as a negative regulator of Notch signaling by ubiquitylating the active NOTCH1 protein (N1ICD), leading to its degradation. Consistent with abnormal activation of Notch signaling and impaired repair of DSBs in Rnf8-mutant mammary epithelial cells, we observed increased risk of mammary tumorigenesis in mouse models for RNF8 deficiency. Notably, deficiency of RNF8 sensitized breast cancer cells to combination of pharmacological inhibitors of Notch signaling and poly(ADP-ribose) polymerase (PARP), suggesting implications for treatment of breast cancer associated with impaired RNF8 expression or function.


Subject(s)
Carcinogenesis/metabolism , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Animal/metabolism , Neoplasm Proteins/metabolism , Receptor, Notch1/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/biosynthesis , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Breaks, Double-Stranded , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Receptor, Notch1/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...