Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
GigaByte ; 2024: gigabyte107, 2024.
Article in English | MEDLINE | ID: mdl-38434929

ABSTRACT

This paper presents two key data sets derived from the Pomar Urbano project. The first data set is a comprehensive catalog of edible fruit-bearing plant species, native or introduced to Brazil. The second data set, sourced from the iNaturalist platform, tracks the distribution and monitoring of these plants within urban landscapes across Brazil. The study includes data from the capitals of all 27 federative units of Brazil, focusing on the ten cities that contributed the most observations as of August 2023. The research emphasizes the significance of citizen science in urban biodiversity monitoring and its potential to contribute to various fields, including food and nutrition, creative industry, study of plant phenology, and machine learning applications. We expect the data sets presented in this paper to serve as resources for further studies in urban foraging, food security, cultural ecosystem services, and environmental sustainability.

2.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38442146

ABSTRACT

Urbanization brings forth social challenges in emerging countries such as Brazil, encompassing food scarcity, health deterioration, air pollution, and biodiversity loss. Despite this, urban areas like the city of São Paulo still boast ample green spaces, offering opportunities for nature appreciation and conservation, enhancing city resilience and livability. Citizen science is a collaborative endeavor between professional scientists and nonprofessional scientists in scientific research that may help to understand the dynamics of urban ecosystems. We believe citizen science has the potential to promote human and nature connection in urban areas and provide useful data on urban biodiversity.


Subject(s)
Citizen Science , Humans , Brazil , Ecosystem , Biodiversity
4.
NPJ Sci Food ; 7(1): 46, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658060

ABSTRACT

Ensuring safe and healthy food is a big challenge due to the complexity of food supply chains and their vulnerability to many internal and external factors, including food fraud. Recent research has shown that Artificial Intelligence (AI) based algorithms, in particularly data driven Bayesian Network (BN) models, are very suitable as a tool to predict future food fraud and hence allowing food producers to take proper actions to avoid that such problems occur. Such models become even more powerful when data can be used from all actors in the supply chain, but data sharing is hampered by different interests, data security and data privacy. Federated learning (FL) may circumvent these issues as demonstrated in various areas of the life sciences. In this research, we demonstrate the potential of the FL technology for food fraud using a data driven BN, integrating data from different data owners without the data leaving the database of the data owners. To this end, a framework was constructed consisting of three geographically different data stations hosting different datasets on food fraud. Using this framework, a BN algorithm was implemented that was trained on the data of different data stations while the data remained at its physical location abiding by privacy principles. We demonstrated the applicability of the federated BN in food fraud and anticipate that such framework may support stakeholders in the food supply chain for better decision-making regarding food fraud control while still preserving the privacy and confidentiality nature of these data.

5.
Curr Res Food Sci ; 5: 84-95, 2022.
Article in English | MEDLINE | ID: mdl-35024621

ABSTRACT

Systematic reviews are used to collect relevant literature to answer a research question in a way that is clear, thorough, unbiased and reproducible. They are implemented as a standard method in the domain of food safety to obtain a literature overview on the state-of-the-art research related to food safety topics of interest. A disadvantage to systematic reviews, however, is that this process is time-consuming and requires expert domain knowledge. The work reported here aims to reduce the time needed by an expert to screen all possible relevant articles by applying machine learning techniques to classify the articles automatically as either relevant or not relevant. Eight different machine learning algorithms and ensembles of all combinations of these algorithms were tested on two different systematic reviews on food safety (i.e. chemical hazards in cereals and leafy greens). The results showed that the best performance was obtained by an ensemble of naive Bayes and a support vector machine, resulting in an average decrease of 32.8% in the amount of articles the expert has to read and an average decrease in irrelevant articles of 57.8% while keeping 95% of the relevant articles. It was concluded that automatic classification of the literature in a systematic literature review can support experts in their task and save valuable time without compromising the quality of the review.

6.
BMC Bioinformatics ; 19(1): 183, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29801439

ABSTRACT

BACKGROUND: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. RESULTS: The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. CONCLUSION: QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.


Subject(s)
Data Mining/methods , Quantitative Trait Loci , Software , Algorithms , Computer Graphics , Databases, Factual , Solanum lycopersicum/genetics , Publications , Semantics , Solanum tuberosum/genetics
7.
PLoS One ; 10(3): e0119016, 2015.
Article in English | MEDLINE | ID: mdl-25806817

ABSTRACT

Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer's disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor.


Subject(s)
Brain/metabolism , Computer Simulation , Gene Expression , Metabolic Networks and Pathways , Models, Biological , Algorithms , Computational Biology , Humans , Software , Systems Biology
8.
Philos Trans A Math Phys Eng Sci ; 369(1954): 4295-315, 2011 Nov 13.
Article in English | MEDLINE | ID: mdl-21969677

ABSTRACT

The human physiological system is stressed to its limits during endurance sports competition events. We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We calculated heat transfer by conduction and blood flow inside the body, and heat transfer from the skin by radiation, convection and sweat evaporation, resulting in temperature changes in 25 body compartments. We simulated a mountain time trial to Alpe d'Huez during the Tour de France. To approach the time realized by Lance Armstrong in 2004, very high oxygen uptake must be sustained by the simulated cyclist. Temperature was predicted to reach 39°C in the brain, and 39.7°C in leg muscle. In addition to the macroscopic simulation, we analysed the buffering of bursts of high adenosine triphosphate hydrolysis by creatine kinase during cyclical muscle activity at the biochemical pathway level. To investigate the low oxygen to carbohydrate ratio for the brain, which takes up lactate during exercise, we calculated the flux distribution in cerebral energy metabolism. Computational modelling of the human body, describing heat exchange and energy metabolism, makes simulation of endurance sports events feasible.


Subject(s)
Athletes , Energy Metabolism/physiology , Physical Endurance/physiology , Sports/physiology , Adenosine Triphosphate/metabolism , Bicycling , Biophysics/methods , Body Temperature , Computer Simulation , Hot Temperature , Humans , Male , Models, Biological , Muscle, Skeletal/pathology , Time Factors
9.
J Integr Bioinform ; 8(2): 160, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21778530

ABSTRACT

The rapid increase of ~omics datasets generated by microarray, mass spectrometry and next generation sequencing technologies requires an integrated platform that can combine results from different ~omics datasets to provide novel insights in the understanding of biological systems. MADMAX is designed to provide a solution for storage and analysis of complex ~omics datasets. In addition, analysis results (such as lists of genes) will be merged to reveal candidate genes supported by all datasets. The system constitutes an ISA-Tab compliant LIMS part which is independent of different analysis pipelines. A pilot study of different type of ~omics data in Brassica rapa demonstrates the possible use of MADMAX. The web-based user interface provides easy access to data and analysis tools on top of the database.


Subject(s)
Brassica rapa/genetics , Genomics/methods , Metabolomics/methods , Software , Brassica rapa/metabolism , Databases, Genetic , Internet , User-Computer Interface
10.
Metabolomics ; 5(4): 419-428, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20046866

ABSTRACT

Clustering and correlation analysis techniques have become popular tools for the analysis of data produced by metabolomics experiments. The results obtained from these approaches provide an overview of the interactions between objects of interest. Often in these experiments, one is more interested in information about the nature of these relationships, e.g., cause-effect relationships, than in the actual strength of the interactions. Finding such relationships is of crucial importance as most biological processes can only be understood in this way. Bayesian networks allow representation of these cause-effect relationships among variables of interest in terms of whether and how they influence each other given that a third, possibly empty, group of variables is known. This technique also allows the incorporation of prior knowledge as established from the literature or from biologists. The representation as a directed graph of these relationship is highly intuitive and helps to understand these processes. This paper describes how constraint-based Bayesian networks can be applied to metabolomics data and can be used to uncover the important pathways which play a significant role in the ripening of fresh tomatoes. We also show here how this methods of reconstructing pathways is intuitive and performs better than classical techniques. Methods for learning Bayesian network models are powerful tools for the analysis of data of the magnitude as generated by metabolomics experiments. It allows one to model cause-effect relationships and helps in understanding the underlying processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-009-0166-2) contains supplementary material, which is available to authorized users.

SELECTION OF CITATIONS
SEARCH DETAIL
...