Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Nanotechnol ; 7(8): 509-14, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22728341

ABSTRACT

Nanoscale mechanical oscillators are used as ultrasensitive detectors of force, mass and charge. Nanomechanical oscillators have also been coupled with optical and electronic resonators to explore the quantum properties of mechanical systems. Here, we report an optomechanical transducer in which a Si(3)N(4) nanomechanical beam is coupled to a disk-shaped optical resonator made of silica on a single chip. We demonstrate a force sensitivity of 74 aN Hz(-1/2) at room temperature with a readout stability better than 1% at the minute scale. Our system is particularly suited for the detection of very weak incoherent forces, which is difficult with existing approaches because the force resolution scales with the fourth root of the averaging time. By applying dissipative feedback based on radiation pressure, we significantly relax this constraint and are able to detect an incoherent force with a force spectral density of just 15 aN Hz(-1/2) (which is 25 times less than the thermal noise) within 35 s of averaging time (which is 30 times less than the averaging time that would be needed in the absence of feedback). It is envisaged that our hybrid on-chip transducer could improve the performance of various forms of force microscopy.


Subject(s)
Nanotechnology , Silicon Compounds/chemistry , Transducers , Mechanical Phenomena , Micro-Electrical-Mechanical Systems , Microwaves , Optical Devices , Optical Phenomena
3.
Phys Rev Lett ; 107(6): 063901, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902324

ABSTRACT

We report the generation of an octave-spanning optical frequency comb in a continuous wave laser pumped microresonator. The generated comb spectrum covers the wavelength range from 990 to 2170 nm without relying on additional external broadening. Continuous tunability of the generated frequency comb over more than an entire free spectral range is demonstrated. Moreover, the linewidth of individual optical comb components and its relation to the pump laser phase noise is studied. The ability to derive octave-spanning spectra from microresonator comb generators represents a key step towards f-2f self-referencing of microresonator-based optical frequency combs.

4.
Phys Rev Lett ; 106(20): 203902, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21668229

ABSTRACT

Periodically structured materials can sustain both optical and mechanical modes. Here we investigate and observe experimentally the optomechanical properties of a conventional two-dimensional suspended photonic crystal defect cavity with a mode volume of ~3(λ/n)³. Two families of mechanical modes are observed: flexural modes, associated to the motion of the whole suspended membrane, and localized modes with frequencies in the GHz regime corresponding to localized phonons in the optical defect cavity of diffraction-limited size. We demonstrate direct measurements of the optomechanical vacuum coupling rate using a frequency calibration technique. The highest measured values exceed 80 kHz, demonstrating high coupling of optical and mechanical modes in such structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...