Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
CBE Life Sci Educ ; 18(1): ar8, 2019 03.
Article in English | MEDLINE | ID: mdl-30807254

ABSTRACT

Hybrid and online courses are gaining attention as alternatives to traditional face-to-face classes. In addition to the pedagogical flexibility afforded by alternative formats, these courses also appeal to campuses aiming to maximize classroom space. The literature, however, reports conflicting results regarding the effect of hybrid and online courses on student learning. We designed, taught, and assessed a fully online course (100% online) and a hybrid-and-flipped course (50% online 50% face-to-face) and compared those formats with a lecture-based face-to-face course. The three formats also varied in the degree of structure; the hybrid course was the most structured and the face-to-face course was the least structured. All three courses were taught by the same instructor in a large Hispanic-serving research university. We found that exam scores for all students were lowest in the face-to-face course. Hispanic and Black students had higher scores in the hybrid format compared with online and face-to-face, while white students had the highest performance in the online format. We conclude that a hybrid course format with high structure can improve exam performance for traditionally underrepresented students, closing the achievement gap even while in-person contact hours are reduced.


Subject(s)
Achievement , Biology/education , Curriculum , Educational Measurement , Ethnicity , Female , Humans , Male , Reproducibility of Results , Students , Universities , Young Adult
2.
J Exp Biol ; 216(Pt 13): 2403-11, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761465

ABSTRACT

The balance between the costs and benefits of conspicuous animal communication signals ensures that signal expression relates to the quality of the bearer. Signal plasticity enables males to enhance conspicuous signals to impress mates and competitors and to reduce signal expression to lower energetic and predation-related signaling costs when competition is low. While signal plasticity may benefit the signaler, it can compromise the reliability of the information conveyed by the signals. In this paper we review the effect of signal plasticity on the reliability of the electrocommunication signal of the gymnotiform fish Brachyhypopomus gauderio. We (1) summarize the endocrine regulation of signal plasticity, (2) explore the regulation of signal plasticity in females, (3) examine the information conveyed by the signal, (4) show how that information changes when the signal changes, and (5) consider the energetic strategies used to sustain expensive signaling. The electric organ discharge (EOD) of B. gauderio changes in response to social environment on two time scales. Two hormone classes, melanocortins and androgens, underlie the short-term and long-term modulation of signal amplitude and duration observed during social interaction. Population density drives signal amplitude enhancement, unexpectedly improving the reliability with which the signal predicts the signaler's size. The signal's second phase elongation predicts androgen levels and male reproductive condition. Males sustain signal enhancement with dietary intake, but when food is limited, they 'go for broke' and put extra energy into electric signals. Cortisol diminishes EOD parameters, but energy-limited males offset cortisol effects by boosting androgen levels. While physiological constraints are sufficient to maintain signal amplitude reliability, phenotypic integration and signaling costs maintain reliability of signal duration, consistent with theory of honest signaling.


Subject(s)
Animal Communication , Gymnotiformes/physiology , Androgens/metabolism , Animals , Electric Organ/physiology , Energy Metabolism , Female , Hydrocortisone/metabolism , Male , Melanocortins/metabolism , Sexual Behavior, Animal
3.
Article in English | MEDLINE | ID: mdl-23579464

ABSTRACT

In animal communication, the social context that elicits particular dynamic changes in the signal can provide indirect clues to signal function. Female presence should increase the expression of male signal traits relevant for mate-choice, while male presence should promote the enhancement of traits involved in male-male competition. The electric fish Brachyhypopomus gauderio produces a biphasic electric pulse for electrolocation and communication. Pulse amplitude predicts the signaler's body size while pulse duration predicts circulating androgen levels. Males enhance pulse amplitude and duration when the numbers of males and females increase simultaneously. Here we tested the relative effects of female presence and male presence on male signal enhancement, and whether the size of the male competitor affected this enhancement. We found that male presence drives the enhancement of both pulse amplitude and second phase duration, independently of the size of the male competitor. Female presence induces the enhancement of pulse duration, but not pulse amplitude. These data suggest that males probably attend to information about a competitor's body size coded by pulse amplitude and attend to aggressiveness coded by a competitor's pulse duration, both potential predictors of fight outcome. Females may be primarily concerned about information on reproductive condition coded by pulse duration.


Subject(s)
Animal Communication , Cues , Electric Fish/physiology , Electric Organ/physiology , Neuronal Plasticity , Social Behavior , Androgens/metabolism , Animals , Competitive Behavior , Electric Fish/metabolism , Electric Organ/drug effects , Electric Organ/metabolism , Female , Hormone Antagonists/pharmacology , Male , Mating Preference, Animal , Melanocortins/metabolism , Membrane Potentials , Neuronal Plasticity/drug effects , Receptors, Melanocortin/antagonists & inhibitors , Receptors, Melanocortin/metabolism , Sex Factors , Signal Detection, Psychological , Time Factors
4.
Horm Behav ; 62(4): 381-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22801246

ABSTRACT

Vertebrates exposed to stressful conditions release glucocorticoids to sustain energy expenditure. In most species elevated glucocorticoids inhibit reproduction. However individuals with limited remaining reproductive opportunities cannot afford to forgo reproduction and should resist glucocorticoid-mediated inhibition of reproductive behavior. The electric fish Brachyhypopomus gauderio has a single breeding season in its lifetime, thus we expect males to resist glucocorticoid-mediated inhibition of their sexual advertisement signals. We studied stress resistance in male B. gauderio (i) by examining the effect of exogenous cortisol administration on the signal waveform and (ii) by investigating the effect of food limitation on androgen and cortisol levels, the amplitude of the electric signal waveform, the responsiveness of the electric signal waveform to social challenge, and the amount of feeding activity. Exogenous cortisol administration did reduce signal amplitude and pulse duration, but endogenous cortisol levels did not rise with food limitation or social challenge. Despite food limitation, males responded to social challenges by further increasing androgen levels and enhancing the amplitude and duration of their electric signal waveforms. Food-restricted males increased androgen levels and signal pulse duration more than males fed ad libitum. Socially challenged fish increased food consumption, probably to compensate for their elevated energy expenditure. Previous studies showed that socially challenged males of this species simultaneously elevate testosterone and cortisol in proportion to signal amplitude. Thus, B. gauderio appears to protect its cortisol-sensitive electric advertisement signal by increasing food intake, limiting cortisol release, and offsetting signal reduction from cortisol with signal-enhancing androgens.


Subject(s)
Animal Communication , Caloric Restriction/psychology , Electric Fish/physiology , Social Isolation , Stress, Psychological/physiopathology , Adaptation, Psychological/physiology , Animals , Caloric Restriction/veterinary , Electric Fish/blood , Electric Organ/physiopathology , Electrophysiological Phenomena/physiology , Female , Hydrocortisone/blood , Hydrocortisone/pharmacology , Longevity/physiology , Male , Malnutrition/psychology , Malnutrition/veterinary , Physical Exertion/physiology , Social Isolation/psychology , Stress, Psychological/blood
5.
Anim Behav ; 83(4): 935-944, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22665940

ABSTRACT

Signal honesty may be compromised when heightened competition provides incentive for signal exaggeration. Some degree of honesty might be maintained by intrinsic handicap costs on signalling or through imposition of extrinsic costs, such as social punishment of low quality cheaters. Thus, theory predicts a delicate balance between signal enhancement and signal reliability that varies with degree of social competition, handicap cost, and social cost. We investigated whether male sexual signals of the electric fish Brachyhypopomus gauderio would become less reliable predictors of body length when competition provides incentives for males to boost electric signal amplitude. As expected, social competition under natural field conditions and in controlled lab experiments drove males to enhance their signals. However, signal enhancement improved the reliability of the information conveyed by the signal, as revealed in the tightening of the relationship between signal amplitude and body length. Signal augmentation in male B. gauderio was independent of body length, and thus appeared not to be curtailed through punishment of low quality (small) individuals. Rather, all individuals boosted their signals under high competition, but those whose signals were farthest from the predicted value under low competition boosted signal amplitude the most. By elimination, intrinsic handicap cost of signal production, rather than extrinsic social cost, appears to be the basis for the unexpected reinforcement of electric signal honesty under social competition. Signal modulation may provide its greatest advantage to the signaller as a mechanism for handicap disposal under low competition rather than as a mechanism for exaggeration of quality under high competition.

6.
Horm Behav ; 60(4): 420-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21802421

ABSTRACT

Hormones mediate sexually selected traits including advertisement signals. Hormonal co-regulation links the signal to other hormonally-mediated traits such that the tighter the integration, the more reliable the signal is as a predictor of those other traits. Androgen administration increases the duration of the communication signal pulse in both sexes of the electric fish Brachyhypopomus gauderio. To determine whether the duration of the signal pulse could function as an honest indicator of androgen levels and other androgen-mediated traits, we measured the variation in sex steroids, signal pulse duration, and sexual development throughout the breeding season of B. gauderio in marshes in Uruguay. Although the sexes had different hormone titres and signal characteristics, in both sexes circulating levels of the androgens testosterone (T) and 11-ketotestosterone (11-KT) were strongly related to signal pulse duration. Consequently, signal pulse duration can serve as an honest indicator of circulating androgens in males and females alike. Additionally, through phenotypic integration, signal pulse duration also predicts other sexual traits directly related to androgen production: gonad size in males and estradiol (E2) levels in females. Our findings show that tight hormonal phenotypic integration between advertisement signal and other sex steroid-mediated traits renders the advertisement signal an honest indicator of a suite of reproductive traits.


Subject(s)
Electricity , Gymnotiformes/physiology , Hormones/pharmacology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Estradiol/blood , Female , Gymnotiformes/blood , Gymnotiformes/metabolism , Hormones/blood , Male , Models, Biological , Phenotype , Sex Characteristics , Signal Transduction/drug effects , Signal Transduction/physiology , Testosterone/analogs & derivatives , Testosterone/blood
7.
Horm Behav ; 60(2): 139-47, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21596047

ABSTRACT

The communication signals of electric fish can be dynamic, varying between the sexes on a circadian rhythm and in response to social and environmental cues. In the gymnotiform fish Brachyhypopomus gauderio waveform shape of the electric organ discharge (EOD) is regulated by steroid and peptide hormones. Furthermore, EOD amplitude and duration change on different timescales and in response to different social stimuli, suggesting that they are regulated by different mechanisms. Little is known about how androgen and peptide hormone systems interact to regulate signal waveform. We investigated the relationship between the androgens testosterone (T) and 11-ketotestosterone (11-KT), the melanocortin peptide hormone α-MSH, and their roles in regulating EOD waveform of male B. gauderio. Males were implanted with androgen (T, 11-KT, or blank), and injected with α-MSH before and at the peak of androgen effect. We compared the effects of androgen implants and social interactions by giving males a size-matched male stimulus with which they could interact electrically. Social stimuli and both androgens increased EOD duration, but only social stimuli and 11-KT elevated amplitude. However, no androgen enhanced EOD amplitude to the extent of a social stimulus, suggesting that a yet unidentified hormonal pathway regulates this signal parameter. Additionally, both androgens increased response of EOD duration to α-MSH, but only 11-KT increased response of EOD amplitude to α-MSH. Social stimuli had no effect on EOD response to α-MSH. The finding that EOD amplitude is preferentially regulated by 11-KT in B. gauderio may provide the basis for independent control of amplitude and duration.


Subject(s)
Androgens/pharmacology , Animal Communication , Electric Organ/drug effects , Gymnotiformes/physiology , Testosterone/analogs & derivatives , Testosterone/pharmacology , alpha-MSH/pharmacology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Electric Organ/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...