Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 179: 106114, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060966

ABSTRACT

The pathogen Phomopsis vexans causes leaf blight, fruit rot, and damping off in brinjal plants, all of which are extremely detrimental. The pathogen affects host plant photosynthetic efficiency and fruit quantity and quality. An appreciation of the pathogenicity of P. vexans is essential for the effective control of infections in the field. Consequently, the goal of this study was to characterise P. vexans in terms of their biochemistry, molecular diversity, and pathogenicity. In terms of cellulase (97.7 U), catalase (12.2 U), and ascorbate peroxidase (147.3 U) activity, isolate PV1 performed best, followed by PV5 (CL-97.0 U, CAT-11.1 U and APX-144.4 U), and PV8 (CL-88.8 U, CAT-9.8 U and APX-141.9 U). In a greenhouse pathogenicity test, isolate PV1 had the highest incidence (97%) and severity (88.6%) of disease, whereas isolate PV6 showed the lowest incidence (57.2%) and severity (70%) of disease. The biochemical enzyme activity of P. vexans corresponds well with its greenhouse pathogenicity results, and its combination can be exploited to identify pathogenic P. vexans isolates. Using RAPD and ISSR primers, molecular characterisation indicated genetic diversity but could not distinguish isolates by geographical origin or pathogenicity. The pathogen P. vexans was verified by ITS1 and ITS4 molecular analysis, and the sequences were subsequently deposited in the NCBI database. In conclusion, the enzyme activity relevant to pathogenicity (CL, CAT and APX) in conjunction with the invivo pathogenicity assay might be utilised to differentiate between pathogenic (virulent) and non-pathogenic (avirulent) P. vexans isolates and develop suitable disease management strategies.


Subject(s)
Solanum melongena , Fruit , Random Amplified Polymorphic DNA Technique , Phomopsis
2.
Nutr Cancer ; 73(2): 307-317, 2021.
Article in English | MEDLINE | ID: mdl-32238022

ABSTRACT

The marine ecosystem is considered as a treasure of numerous novel biologically active molecules. We investigated the anticancer potential of the phenolic extract of Halophila ovalis in breast cancer (MCF-7) cells and characterized the possible underlying molecular mechanism. The phenolic extract (5 µl) of H. ovalis effectively inhibited the growth of MCF-7 cells. The results of DAPI staining indicated that this phenolic extract potently induces apoptosis in MCF-7 cells which was observed by increased chromatin condensation in the treated cells. An increased expression of the active fragments of an executioner caspase, caspase 3 in phenolic extract-treated MCF-7 cells further confirms this apoptosis induction. In consequence, the loss of mitochondrial membrane potential was noticed in treated cells. The protein expression analyzes show decreased expression of the anti-apoptotic protein, Bcl-2, and DNA repair enzyme, PARP in treated cells indicating the probable molecular targets of apoptosis. Further, the phenolic extract of H. ovalis blocked the antioxidant defense system in MCF-7 cells by down-regulating the protein expression of a major transcription factor, Nrf-2 and regulatory antioxidant enzymes, SOD-2 and HO-1. These results show the presence of chemopreventive compound(s) in the phenolic extract, which offers a platform for future studies to identify the active principles.


Subject(s)
Breast Neoplasms , Apoptosis , Breast Neoplasms/drug therapy , Caspases , Ecosystem , Female , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...