Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(11): 3035-3046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877629

ABSTRACT

This study examines the impact of incorporating a mobile bed into a membrane bioreactor (MBR) system on the treatment efficiency of dairy industry effluents. Initially, a conventional MBR system was operated for 60 days, followed by a modification that included a support material and ran for another 60 days under identical conditions. Performance was evaluated based on the removal efficiencies for soluble chemical oxygen demand (CODs), phenolic compounds, and oils and greases (OG), alongside measurements of solid content, dissolved oxygen, temperature, mixed liquor pH, and transmembrane pressure (TMP). The introduction of the mobile bed led to an increase in removal efficiencies for COD and phenolic compounds from 94.4 and 92.7% to 98 and 94.4%, respectively, marking statistically significant improvements (p < 0.05), while OG removal remained the same in both strategies (87.7%) (p > 0.05). Moreover, the modified system showed a more stable TMP profile, reducing the need for cleaning interventions compared to the conventional system, which experienced a notable TMP increase requiring cleaning at a 0.6 bar threshold. The findings suggest that integrating a mobile bed into MBR systems significantly enhances the treatment of dairy effluents, presenting an interesting solution for the upgrade of this type of system.


Subject(s)
Bioreactors , Dairying , Membranes, Artificial , Waste Disposal, Fluid , Dairying/methods , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/instrumentation , Biological Oxygen Demand Analysis , Water Purification/methods , Water Purification/instrumentation
2.
Water Sci Technol ; 89(1): 187-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214994

ABSTRACT

This study evaluates the performance of a membrane bioreactor (MBR) for treating wastewater from the laminated plywood industry. To this end, a pilot-scale MBR was operated for 60 days with a hydraulic retention time of 20 h and a solid retention time of 20 days. The reactor's performance was assessed based on the removal of chemical oxygen demand (COD), phenol, turbidity, and apparent color. Furthermore, we monitored the solids content, dissolved oxygen concentration, and pH of the mixed liquor, as well as the progression of the transmembrane pressure (TMP). The wastewater exhibited a COD/biochemical oxygen demand (BOD) ratio of 5.5, suggesting low biodegradability, usually when this ratio is higher than 4.0. Nevertheless, it was observed that the MBR's performance was stable and satisfactory, with average removal efficiencies of 98% for COD, 70% for phenol, 99% for turbidity, and 93% for true color. The evolution of TMP indicated gradual membrane fouling; however, the operational limit of 0.6 bar was not reached during the study period. In conclusion, the utilization of MBR presents a promising approach to mitigate the environmental impacts associated with wastewater from the laminated plywood industry.


Subject(s)
Waste Disposal, Fluid , Wastewater , Membranes, Artificial , Bioreactors , Phenol
SELECTION OF CITATIONS
SEARCH DETAIL
...