Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 101(12): 102173, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228528

ABSTRACT

Betaine is a well-known component of poultry diets with various effects on nutritional physiology. For example, increased water retention due to the osmolytic effect of betaine increases the volume of the cell, thereby accelerating the anabolic activity, integrity of cell membrane, and overall performance of the bird. Betaine is a multifunctional component (trimethyl derivative) acting as the most efficient methyl group donor and as an organic osmolyte, which can directly influence the gastrointestinal tract integrity, functionality, and health. So far, nothing is known about the effect of betaine on the intestinal barrier in chickens. In addition, little is known about comparing natural betaine with its synthetic form. Therefore, an animal study was conducted to ascertain the effects of betaine supplementation (natural and synthetic) on performance and intestinal physiological responses of broilers. One hundred and five 1-day-old broiler chicks were randomly assigned into 3 groups with 35 birds each: control, natural betaine (1 kg active natural (n)-betaine/ton of feed) and synthetic (syn)-betaine-HCL (1 kg active betaine /ton of feed). Histological assessment showed lower jejunal crypt depth and villi height/crypt depth ratio in syn-betaine-HCL group compared with natural n-betaine fed birds. Furthermore, it was found that syn-betaine-HCL negatively affects the integrity of the intestine by increasing the intestinal paracellular permeability in both jejunum and cecum as evidenced by a higher mannitol flux. Additionally, syn-betaine-HCl significantly upregulated the IFN-γ mRNA expression at certain time points, which could promote intestinal permeability, as it plays an important role in intestinal barrier dysfunction. Body weight (BW) and body weight gain (BWG) did not differ (P > 0.05) between the control birds and birds supplemented with syn-betaine-HCL. However, the BW and BWG were significantly (P < 0.05) improved by the dietary inclusion of n-betaine compared with other treatments. Altogether, the dietary inclusion of n-betaine had a positive effect on performance and did not negatively affect gut paracellular permeability. Furthermore, our results show that syn-betaine-HCl induces changes in the intestine, indicating an alteration of the intestinal histology and permeability. Thus, natural or synthetic betaine has different effects, which needs to be considered when using them as a feed supplement.


Subject(s)
Chickens , Intestinal Diseases , Animals , Chickens/physiology , Betaine/pharmacology , Animal Feed/analysis , Intestines , Diet/veterinary , Dietary Supplements , Intestinal Diseases/veterinary , Weight Gain , Body Weight , Animal Nutritional Physiological Phenomena
2.
J Sci Food Agric ; 100(5): 2261-2271, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31917480

ABSTRACT

BACKGROUND: Climatic and dietary shifts predispose ruminal microbes to hyperthermal and hyperosmotic stress, leading to poor fermentation and subsequently adverse effects on ruminant productivity. Betaine may function as substrate, osmolyte, antioxidant, and methyl donor for microbes. However, its effect depends on the extent of microbial catabolism. This study revealed the ruminal disappearance kinetics of betaine and its dose effect on ruminal fermentation during thermal and osmotic stress using a rumen simulation technique. RESULTS: Three different betaine doses were used: 0, 50, and 286 mg L-1 ; each was assigned to two incubation temperatures (39.5 and 42 °C) and two osmotic conditions (295 and 420 mOsmol kg-1 ). Betaine disappeared rapidly within the first 6 h of incubation; however, the rate was lower during hyperosmotic stress (P < 0.05), the stress condition that also suppressed the overall fermentation and degradation of organic nutrients and decreased the bacterial diversity (P < 0.001). During hyperosmotic stress, betaine shifted the fermentation pathway to more propionate (P < 0.05). Betaine counteracted the negative effect of hyperthermal stress on total short-chain fatty acid concentration (P < 0.05) without affecting the composition. Both stress conditions shifted the bacterial composition, but the effect of betaine was minimal. CONCLUSION: Despite its rapid ruminal disappearance, betaine modulated microbial fermentation in different ways depending on stress conditions, indicating the plasticity of the betaine effect in response to various kinds of physicochemical stress. Although betaine did not affect the abundance of ruminal microbiota, the enhanced fermentation suggests an improved microbial metabolic activity under stress conditions. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Betaine/metabolism , Fermentation , Osmotic Pressure/physiology , Rumen/metabolism , Animal Feed , Animals , Bacteria/genetics , Bacteria/metabolism , Fatty Acids, Volatile , Gastrointestinal Microbiome , Kinetics , Osmolar Concentration , RNA, Ribosomal, 16S , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...