Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Bioinformatics ; 20(1): 45, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30669964

ABSTRACT

BACKGROUND: Samples pooling is a method widely used in studies to reduce costs and labour. DNA sample pooling combined with massive parallel sequencing is a powerful tool for discovering DNA variants (polymorphisms) in large analysing populations, which is the base of such research fields as Genome-Wide Association Studies, evolutionary and population studies, etc. Usage of overlapping pools where each sample is present in multiple pools can enhance the accuracy of polymorphism detection and allow identifying carriers of rare-variants. Surprisingly there is a lack of tools for result interpretation and carrier identification, i.e. for "depooling". RESULTS: Here we present s-dePooler, the application for analysis of pooling experiments data. s-dePooler uses the variants information (VCF-file) and the pooling scheme to produce a list of candidate carriers for each polymorphism. We incorporated s-dePooler into a pipeline (dePoP) for automation of pooling analysis. The performance of the pipeline was tested on a synthetic dataset built using the 1000 Genomes Project data, resulting in the successful identification 97% of carriers of polymorphisms present in fewer than ~ 10% of carriers. CONCLUSIONS: s-dePooler along with dePoP can be used to identify carriers of polymorphisms in overlapping pools, and is compatible with any pooling scheme with equivalent molar ratios of pooled samples. s-dePooler and dePoP with usage instructions and test data are freely available at https://github.com/lab9arriam/depop .


Subject(s)
DNA/genetics , Genome-Wide Association Study/methods , Polymorphism, Genetic/genetics , Sequence Analysis, DNA/methods , Humans
2.
Front Physiol ; 8: 536, 2017.
Article in English | MEDLINE | ID: mdl-28790933

ABSTRACT

Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-ß and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-ß induced differentiation SMC were treated with the medium containing TGF-ß1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-ß caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.

3.
Biochim Biophys Acta ; 1862(4): 733-740, 2016 04.
Article in English | MEDLINE | ID: mdl-26876948

ABSTRACT

Bicuspid aortic valve is the most common congenital heart malformation and the reasons for the aortopathies associated with bicuspid aortic valve remain unclear. NOTCH1 mutations are associated with bicuspid aortic valve and have been found in individuals with various left ventricular outflow tract abnormalities. Notch is a key signaling during cardiac valve formation that promotes the endothelial-to-mesenchymal transition. We address the role of Notch signaling in human aortic endothelial cells from patients with bicuspid aortic valve and aortic aneurysm. Aortic endothelial cells were isolated from tissue fragments of bicuspid aortic valve-associated thoracic aortic aneurysm patients and from healthy donors. Endothelial-to-mesenchymal transition was induced by activation of Notch signaling. Effectiveness of the transition was estimated by loss of endothelial and gain of mesenchymal markers by immunocytochemistry and qPCR. We show that aortic endothelial cells from the patients with aortic aneurysm and bicuspid aortic valve have down regulated Notch signaling and fail to activate Notch-dependent endothelial-to-mesenchymal transition in response to its stimulation by different Notch ligands. Our findings support the idea that bicuspid aortic valve and associated aortic aneurysm is associated with dysregulation of the entire Notch signaling pathway independently on the specific gene mutation.


Subject(s)
Aortic Aneurysm/metabolism , Aortic Valve/abnormalities , Endothelium, Vascular/metabolism , Heart Valve Diseases/metabolism , Receptors, Notch/metabolism , Signal Transduction , Adult , Aortic Aneurysm/pathology , Aortic Valve/metabolism , Aortic Valve/pathology , Bicuspid Aortic Valve Disease , Endothelium, Vascular/pathology , Female , Heart Valve Diseases/pathology , Humans , Male , Middle Aged
4.
Int J Vasc Med ; 2016: 3107879, 2016.
Article in English | MEDLINE | ID: mdl-26904289

ABSTRACT

Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis.

5.
Aorta (Stamford) ; 4(6): 219-225, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28516097

ABSTRACT

BACKGROUND: Ascending thoracic aortic aneurysm (aTAA) is a heterogeneous group of disorders that involve impaired endothelial function. The nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine (ADMA) serves as an endothelial dysfunction marker. Thus, we investigated ADMA levels in patients with aTAA. METHODS: Eighty-six patients with aTAA and 18 healthy individuals were enrolled. All patients underwent echocardiography. Plasma ADMA levels were measured using high-performance liquid chromatography. RESULTS: ADMA levels were higher in aTAA patients than in control patients (p = 0.034). According to the multivariable regression model, higher ADMA levels were associated with ascending aortic diameter (p = 0.017), smoking (p = 0.016), and log-transformed estimated glomerular filtration rate (eGFR, p = 0.005). CONCLUSION: This pilot study demonstrates an association of ADMA with ascending aortic dilatation; however, further studies are needed to investigate whether increased ADMA levels underlie aTAA development.

SELECTION OF CITATIONS
SEARCH DETAIL
...