Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(11): 5067-5077, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37943148

ABSTRACT

Carbonated hydroxyapatites (CAp) are very close to natural bone apatite in chemical composition and are regarded as a prospective bone mineral substitute for bone surgery and orthopedics. However, until now, the studies and applications of CAp were limited because of the amorphous nature of the synthetic CAp. In the present work, microsized highly crystalline carbonated apatites with uniform hexagonal (hCAp) or platelike (pCAp) morphology have been studied for the first time in vitro and in vivo, comparing against commercial hydroxyapatite (HAp) and ß-tricalcuim phosphate (ßTCP). In vitro experiments on dissolution of those calcium phosphate ceramics (CPCs) in acetate (pH 5.5) and Tris (pH 7.3) buffer solutions showed the following rank order of the dissolution rates: ßTCP > hCAp > pCAp > HAp. The higher dissolution rate of hCAp in comparison with pCAp is explained by chemical anisotropy of the crystallite surfaces, which was proven by SEM studies of the changes in the morphology of hCAp and pCAp crystallites during hydrolysis. A 5-week experiment on subcutaneous implantation of CPC species showed the following rank order of bioresorption rates: ßTCP > pCAp > hCAp > HAp. pCAp matrixes exhibited the highest biocompatibility, confirmed by histomorphological analysis. Three-month bone regeneration experiments involving a rat tibial defect model were conducted with 250-500 µm granules of pCAp and pCAp-PEPA [pCAp, pretreated with 2 wt % poly(ethylene phosphoric acid)]. Notably, pCAp-PEPA implants were resorbed at higher rates and induced the formation of more mature osseous tissue, a compact bone with Haversian systems.


Subject(s)
Bone Substitutes , Polyethylene , Rats , Animals , Anisotropy , Prospective Studies , Apatites/chemistry , Durapatite/pharmacology , Bone Regeneration , Ethylenes
2.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446347

ABSTRACT

Composites of synthetic bone mineral substitutes (BMS) and biodegradable polyesters are of particular interest for bone surgery and orthopedics. Manufacturing of composite scaffolds commonly uses mixing of the BMS with polymer melts. Melt processing requires a high homogeneity of the mixing, and is complicated by BMS-promoted thermal degradation of polymers. In our work, poly(L-lactide) (PLLA) and poly(ε-caprolactone) (PCL) composites reinforced by commercial ß-tricalcium phosphate (ßTCP) or synthesized carbonated hydroxyapatite with hexagonal and plate-like crystallite shapes (hCAp and pCAp, respectively) were fabricated using injection molding. pCAp-based composites showed advanced mechanical and thermal characteristics, and the best set of mechanical characteristics was observed for the PLLA-based composite containing 25 wt% of pCAp. To achieve compatibility of polyesters and pCAp, reactive block copolymers of PLLA or PCL with poly(tert-butyl ethylene phosphate) (C1 and C2, respectively) were introduced to the composite. The formation of a polyester-b-poly(ethylene phosphoric acid) (PEPA) compatibilizer during composite preparation, followed by chemical binding of PEPA with pCAp, have been proved experimentally. The presence of 5 wt% of the compatibilizer provided deeper homogenization of the composite, resulting in a marked increase in strength and moduli as well as a more pronounced nucleation effect during isothermal crystallization. The use of C1 increased the thermal stability of the PLLA-based composite, containing 25 wt% of pCAp. In view of positive impacts of polyester-b-PEPA on composite homogeneity, mechanical characteristics, and thermal stability, polyester-b-PEPA will find application in the further development of composite materials for bone surgery and orthopedics.


Subject(s)
Bone Substitutes , Polyesters , Polyesters/chemistry , Polyethylene , Polymers , Bone Substitutes/chemistry , Durapatite , Ethylenes , Biocompatible Materials
3.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299308

ABSTRACT

In bone surgery and orthopedics, bioresorbable materials can be helpful in bone repair and countering post-op infections. Explicit antibacterial activity, osteoinductive and osteoconductive effects are essential to achieving this objective. Nonwoven electrospun (ES) fibers are receiving the close attention of physicians as promising materials for wound dressing and tissue engineering; potentially, in high contrast with dense materials, ES mats hamper regeneration of the bone extracellular matrix to a lesser extent. The use of the compositions of inherently biodegradable polyesters (poly(ε-caprolactone) PCL, poly(lactoglycolide), etc.), calcium phosphates and antibiotics is highly prospective, but the task of forming ES fibers from such compositions is complicated by the incompatibility of the main organic and inorganic ingredients, polyesters and calcium phosphates. In the present research we report the synthesis of hydroxyapatite (HAp) nanoparticles with uniform morphology, and demonstrate high efficiency of the block copolymer of PCL and poly(ethylene phosphoric acid) (PEPA) as an efficient compatibilizer for PCL/HAp mixtures that are able to form ES fibers with improved mechanical characteristics. The materials obtained in the presence of vancomycin exhibited incremental drug release against Staphylococcus aureus (St. aureus).


Subject(s)
Anti-Bacterial Agents/chemistry , Bone Substitutes/chemistry , Hydroxyapatites/chemistry , Anti-Bacterial Agents/administration & dosage , Biomechanical Phenomena , Drug Liberation , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanofibers/chemistry , Nanofibers/ultrastructure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polyesters/chemistry , Polyethylenes/chemistry , Staphylococcus aureus/drug effects , Vancomycin/administration & dosage , Vancomycin/chemistry , X-Ray Diffraction
4.
Int J Mol Sci ; 20(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835689

ABSTRACT

There is a current clinical need for the development of bone void fillers and bioactive bone graft substitutes. The use of mesenchymal stem cells (MSCs) that are seeded into 3D scaffolds and induce bone generation in the event of MSCs osteogenic differentiation is highly promising. Since calcium ions and phosphates promote the osteogenic differentiation of MSCs, the use of the calcium complexes of phosphate-containing polymers is highly prospective in the development of osteogenic scaffolds. Calcium poly(ethylene phosphate)s (PEP-Ca) appear to be potentially suitable candidates primarily because of PEP's biodegradability. In a series of experiments with human adipose-tissue-derived multipotent mesenchymal stem cells (ADSCs), we demonstrated that PEP-Ca are non-toxic and give rise to osteogenesis gene marker, bone morphogenetic protein 2 (BMP-2) and mineralization of the intercellular matrix. Owing to the synthetic availability of poly(ethylene phosphoric acid) block copolymers, these results hold out the possibility for the development of promising new polymer composites for orthopaedic and maxillofacial surgery.


Subject(s)
Calcium Phosphates/pharmacology , Calcium/pharmacology , Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Polyethylene/pharmacology , Calcification, Physiologic/drug effects , Calcium/chemistry , Calcium Phosphates/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Phosphoric Acids/chemical synthesis , Phosphoric Acids/chemistry , Polyethylene/chemistry
5.
Polymers (Basel) ; 11(10)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658688

ABSTRACT

Catalytic ring-opening polymerization (ROP) of cyclic esters (lactides, lactones) and cyclic ethylene phosphates is an effective way to process materials with regulated hydrophilicity and controlled biodegradability. Random copolymers of cyclic monomers of different chemical nature are highly attractive due to their high variability of characteristics. Aryloxy-alkoxy complexes of non-toxic metals such as derivatives of 2,6-di-tert-butyl-4-methylphenoxy magnesium (BHT-Mg) complexes are effective coordination catalysts for homopolymerization of all types of traditional ROP monomers. In the present paper, we report the results of density functional theory (DFT) modeling of BHT-Mg-catalyzed copolymerization for lactone/lactide, lactone/ethylene phosphate and lactide/ethylene phosphate mixtures. ε-Caprolactone (ε-CL), l-lactide (l-LA) and methyl ethylene phosphate (MeOEP) were used as examples of monomers in DFT simulations by the Gaussian-09 program package with the B3PW91/DGTZVP basis set. Both binuclear and mononuclear reaction mechanistic concepts have been applied for the calculations of the reaction profiles. The results of calculations predict the possibility of the formation of random copolymers based on l-LA/MeOEP, and substantial hindrance of copolymerization for ε-CL/l-LA and ε-CL/MeOEP pairs. From the mechanistic point of view, the formation of highly stable five-membered chelate by the products of l-LA ring-opening and high donor properties of phosphates are the key factors that rule the reactions. The results of DFT modeling have been confirmed by copolymerization experiments.

6.
J Physiol Sci ; 63(1): 79-85, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22983821

ABSTRACT

The aim of the study was to determine the association between ACE I/D, ACTN3 R577X and PPARA intron 7 G/C gene polymorphisms and strength-related traits in 457 middle school-age children (219 boys and 238 girls; aged 11 ± 0.4 years). The assessment of different phenotypes was conducted with a number of performance tests. Gene polymorphisms were determined by PCR. The ACE D allele was associated with high results of standing long-jump test in boys [II 148.3 (16.3) cm, ID 152.6 (19.6) cm, DD 158.2 (19.1) cm; P = 0.037]. The ACTN3 R allele was associated with high results of performance tests in males only in combination with other genes (standing long-jump test: P = 0.021; handgrip strength test: P < 0.0001). Furthermore, the male carriers of the PPARA gene C allele demonstrated the best results of handgrip strength testing than GG homozygotes [GG 14.6 (4.0) kg, GC/CC 15.7 (4.3) kg; P = 0.048]. Thus, the ACE, ACTN3 and PPARA gene variants are associated with strength-related traits in physically active middle school-age boys.


Subject(s)
Actinin/genetics , Muscle Strength/genetics , PPAR alpha/genetics , Peptidyl-Dipeptidase A/genetics , Alleles , Body Mass Index , Body Weight/genetics , Child , Female , Hand Strength , Homozygote , Humans , Introns , Male , Phenotype , Polymorphism, Genetic , Sports
7.
Dent Mater ; 25(5): 557-65, 2009 May.
Article in English | MEDLINE | ID: mdl-19297016

ABSTRACT

OBJECTIVES: The goal of the present study was to investigate the potential for acoustic microscopy techniques to characterize the cement-dentin interface in restored teeth. METHODS: Special flat-parallel specimens and whole extracted teeth with restorations were scanned using a high-frequency (50 MHz) focused ultrasonic transducer. Visual acoustic images (B- and C-scans) of the cement-dentin interface were obtained nondestructively, analyzed and compared with optical images taken after the samples were cut along the scanning axis. The shear bonding strength of a subsection of specimens was tested in a Lloyd material testing machine. RESULTS: An essential distinction between the acoustical properties associated with good and failed bonding has been shown. In the case of failed adhesion, the ultrasound signal reflection from the cement-dentin interface is up to four to seven times higher in magnitude than in the case of good bonding. The comparison of the ultrasound imaging data with the data obtained using an optical microscope revealed a strong correspondence with the acoustical and optical results with respect to the presence, position and dimensions of the defects. The specimens showing higher ultrasound reflection from cement/dentin interface have also shown lower shear bonding strength. SIGNIFICANCE: The results demonstrate that acoustic scanning with a high-frequency focused ultrasonic probe is a valuable method for nondestructive morpho-mechanical analysis of cement/dentin interface for either experimental models or whole restored teeth. An appropriately expanded approach can be widely used for the pre-clinical evaluation of dental materials. Further, this method may prove beneficial in the design of new diagnostic ultrasound devices and techniques for use within clinical dentistry.


Subject(s)
Dental Bonding , Dentin-Bonding Agents , Dentin/diagnostic imaging , Microscopy, Acoustic , Adhesiveness , Dental Stress Analysis , Glass Ionomer Cements , Humans , Materials Testing/methods , Tensile Strength
8.
Appl Opt ; 43(15): 3066-72, 2004 May 20.
Article in English | MEDLINE | ID: mdl-15176194

ABSTRACT

We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.

9.
Electrophoresis ; 23(16): 2804-17, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12210185

ABSTRACT

We have developed a family of high-performance capillary DNA sequencing instruments based on a novel multicolor fluorescent detection technology. This technology is based on two technical innovations: the multilaser excitation of fluorescence of labeled DNA fragments and the "color-blind" single-photon detection of modulated fluorescence. Our machines employ modern digital and broadband techniques that are essential for achieving superior instrument performance. We discuss the design and testing results for several versions of the automated single lane DNA sequencers, as well as our approach to scaling up to multilane instruments.


Subject(s)
Electrophoresis, Capillary/instrumentation , Sequence Analysis, DNA/instrumentation , Color , Equipment Design , Fluorescent Dyes , Lasers , Photons , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...