Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 17(5): 056033, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33052890

ABSTRACT

OBJECTIVE: Ultrasounds (US) use in neural engineering is so far mainly limited to ablation through high intensity focused ultrasound, but interesting preliminary results show that low intensity low frequency ultrasound could be used instead to modulate neural activity. However, the extent of this modulatory ability of US is still unclear, as in in vivo studies it is hard to disentangle the contribution to neural responses of direct activation of the neuron by US stimulation and indirect activation due either to sensory response to mechanical stimulation associated to US, or to propagation of activity from neighboring areas. Here, we aim to show how to separate the three effects and assess the presence of direct response to US stimulation in zebrafish. APPROACH: We observed in zebrafish larvae brain-wide US-induced activity patterns through calcium imaging microscopy. Sensory response to mechanical stimulation was assessed with a US shield. Activity propagation was assessed with inter-area latency evaluation. MAIN RESULTS: We prove that in selected brain regions the zebrafish's neural response is mainly due to direct activation, later spreading to the other regions. Shielding the neurons from direct US stimulation resulted in a significantly attenuated response, showing that sensory stimulation does not play a prominent role. SIGNIFICANCE: US non-invasive neuromodulatory approach might lead to novel ways to test and control neural activity, and hence to novel neuromodulatory therapies. Future studies will focus on the biophysical structure of directly responsive neurons to capture the mechanisms of US induced activity.


Subject(s)
Ultrasonic Therapy , Zebrafish , Animals , Calcium , Larva , Neurons
2.
Science ; 342(6161): 954-6, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24200814

ABSTRACT

Electronically highly excited (Rydberg) atoms experience quantum state-changing interactions similar to Förster processes found in complex molecules, offering a model system to study the nature of dipole-mediated energy transport under the influence of a controlled environment. We demonstrate a nondestructive imaging method to monitor the migration of electronic excitations with high time and spatial resolution, using electromagnetically induced transparency on a background gas acting as an amplifier. The continuous spatial projection of the electronic quantum state under observation determines the many-body dynamics of the energy transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...