Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(41): eadg3844, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824623

ABSTRACT

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.


Subject(s)
Broca Area , Cerebral Cortex , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping
2.
Commun Biol ; 5(1): 447, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551498

ABSTRACT

The combination of optical tissue transparency with immunofluorescence allows the molecular characterization of biological tissues in 3D. However, adult human organs are particularly challenging to become transparent because of the autofluorescence contributions of aged tissues. To meet this challenge, we optimized SHORT (SWITCH-H2O2-antigen Retrieval-TDE), a procedure based on standard histological treatments in combination with a refined clearing procedure to clear and label portions of the human brain. 3D histological characterization with multiple molecules is performed on cleared samples with a combination of multi-colors and multi-rounds labeling. By performing fast 3D imaging of the samples with a custom-made inverted light-sheet fluorescence microscope (LSFM), we reveal fine details of intact human brain slabs at subcellular resolution. Overall, we proposed a scalable and versatile technology that in combination with LSFM allows mapping the cellular and molecular architecture of the human brain, paving the way to reconstruct the entire organ.


Subject(s)
Hydrogen Peroxide , Imaging, Three-Dimensional , Adult , Aged , Brain/diagnostic imaging , Fluorescent Antibody Technique , Humans , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods
3.
J Biophotonics ; 15(4): e202100256, 2022 04.
Article in English | MEDLINE | ID: mdl-35000289

ABSTRACT

Two-photon (2P) excitation is a cornerstone approach widely employed in neuroscience microscopy for deep optical access and sub-micrometric-resolution light targeting into the brain. However, besides structural and functional imaging, 2P optogenetic stimulations are less routinary, especially in 3D. This is because of the adopted scanning systems, often feebly effective, slow and mechanically constricted. Faster illumination can be achieved through acousto-optic deflectors (AODs) although their applicability to large volumes excitation has been limited by large efficiency drop along the optical axis. Here, we present a new AOD-based scheme for 2P 3D scanning that improves the power delivery between different illumination planes. We applied this approach to photostimulate an optogenetic actuator in zebrafish larvae, demonstrating the method efficiency observing increased activity responses and uniform activation probabilities from neuronal clusters addressed in the volume. This novel driving scheme can open to new AOD applications in neuroscience, allowing more effective 3D interrogation in large neuronal networks.


Subject(s)
Neurons , Zebrafish , Animals , Brain/diagnostic imaging , Optogenetics , Photic Stimulation/methods
4.
Prog Biophys Mol Biol ; 168: 52-65, 2022 01.
Article in English | MEDLINE | ID: mdl-34274370

ABSTRACT

In recent years, light-sheet fluorescence microscopy (LSFM) has found a broad application for imaging of diverse biological samples, ranging from sub-cellular structures to whole animals, both in-vivo and ex-vivo, owing to its many advantages relative to point-scanning methods. By providing the selective illumination of sample single planes, LSFM achieves an intrinsic optical sectioning and direct 2D image acquisition, with low out-of-focus fluorescence background, sample photo-damage and photo-bleaching. On the other hand, such an illumination scheme is prone to light absorption or scattering effects, which lead to uneven illumination and striping artifacts in the images, oriented along the light sheet propagation direction. Several methods have been developed to address this issue, ranging from fully optical solutions to entirely digital post-processing approaches. In this work, we present them, outlining their advantages, performance and limitations.


Subject(s)
Artifacts , Animals , Microscopy, Fluorescence
5.
Front Neuroanat ; 15: 752234, 2021.
Article in English | MEDLINE | ID: mdl-34867215

ABSTRACT

The combination of tissue clearing techniques with advanced optical microscopy facilitates the achievement of three-dimensional (3D) reconstruction of macroscopic specimens at high resolution. Whole mouse organs or even bodies have been analyzed, while the reconstruction of the human nervous system remains a challenge. Although several tissue protocols have been proposed, the high autofluorescence and variable post-mortem conditions of human specimens negatively affect the quality of the images in terms of achievable transparency and staining contrast. Moreover, homogeneous staining of high-density epitopes, such as neuronal nuclear antigen (NeuN), creates an additional challenge. Here, we evaluated different tissue transformation approaches to find the best solution to uniformly clear and label all neurons in the human cerebral cortex using anti-NeuN antibodies in combination with confocal and light-sheet fluorescence microscopy (LSFM). Finally, we performed mesoscopic high-resolution 3D reconstruction of the successfully clarified and stained samples with LSFM.

6.
Biomed Opt Express ; 11(8): 4651-4665, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32923069

ABSTRACT

Light-sheet microscopy (LSM) is a powerful imaging technique that uses a planar illumination oriented orthogonally to the detection axis. Two-photon (2P) LSM is a variant of LSM that exploits the 2P absorption effect for sample excitation. The light polarization state plays a significant, and often overlooked, role in 2P absorption processes. The scope of this work is to test whether using different polarization states for excitation light can affect the detected signal levels in 2P LSM imaging of typical biological samples with a spatially unordered dye population. Supported by a theoretical model, we compared the fluorescence signals obtained using different polarization states with various fluorophores (fluorescein, EGFP and GCaMP6s) and different samples (liquid solution and fixed or living zebrafish larvae). In all conditions, in agreement with our theoretical expectations, linear polarization oriented parallel to the detection plane provided the largest signal levels, while perpendicularly-oriented polarization gave low fluorescence signal with the biological samples, but a large signal for the fluorescein solution. Finally, circular polarization generally provided lower signal levels. These results highlight the importance of controlling the light polarization state in 2P LSM of biological samples. Furthermore, this characterization represents a useful guide to choose the best light polarization state when maximization of signal levels is needed, e.g. in high-speed 2P LSM.

7.
Biomed Opt Express ; 11(6): 3111-3124, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32637245

ABSTRACT

In recent years light-sheet fluorescence microscopy (LSFM) has become a cornerstone technology for neuroscience, improving the quality and capabilities of 3D imaging. By selectively illuminating a single plane, it provides intrinsic optical sectioning and fast image recording, while minimizing out of focus fluorescence background, sample photo-damage and photo-bleaching. However, images acquired with LSFM are often affected by light absorption or scattering effects, leading to un-even illumination and striping artifacts. In this work we present an optical solution to this problem, via fast multi-directional illumination of the sample, based on an acousto-optical deflector (AOD). We demonstrate that this pivoting system is compatible with confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) by using a pivoted elliptical-Gaussian beam. We tested its performance by acquiring signals emitted by specific fluorophores in several mouse brain areas, comparing the pivoting beam illumination and a traditional static one, measuring the point spread function response and quantifying the striping reduction. We observed real-time shadow suppression, while preserving the advantages of confocal detection for image contrast.

8.
J Biomed Opt ; 24(10): 1-6, 2019 10.
Article in English | MEDLINE | ID: mdl-31674164

ABSTRACT

Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal­oxide­semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acousto-optic deflector. Such a simple solution enables us to independently generate, control and synchronize two beams with the two rolling slits on the camera. We show that the doubling of the imaging speed does not affect the confocal detection high contrast.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Animals , Brain/diagnostic imaging , Equipment Design , High-Throughput Screening Assays/methods , Larva/cytology , Mice , Mice, Inbred C57BL , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Zebrafish
9.
Front Neuroanat ; 13: 7, 2019.
Article in English | MEDLINE | ID: mdl-30800060

ABSTRACT

The development of light-sheet fluorescence microscopy (LSFM) has greatly expanded the experimental capabilities in many biological and biomedical research fields, enabling for example live studies of murine and zebrafish neural activity or of cell growth and division. The key feature of the method is the selective illumination of a sample single plane, providing an intrinsic optical sectioning and allowing direct 2D image recording. On the other hand, this excitation scheme is more affected by absorption or scattering artifacts in comparison to point scanning methods, leading to un-even illumination. We present here an easily implementable method, based on acousto-optical deflectors (AOD), to overcome this obstacle. We report the advantages provided by flexible and fast AODs in generating simultaneous angled multiple beams from a single laser beam and in fast light sheet pivoting and we demonstrate the suppression of illumination artifacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...