Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Artif Intell ; 3(6): e200267, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34870212

ABSTRACT

PURPOSE: To evaluate the trustworthiness of saliency maps for abnormality localization in medical imaging. MATERIALS AND METHODS: Using two large publicly available radiology datasets (Society for Imaging Informatics in Medicine-American College of Radiology Pneumothorax Segmentation dataset and Radiological Society of North America Pneumonia Detection Challenge dataset), the performance of eight commonly used saliency map techniques were quantified in regard to (a) localization utility (segmentation and detection), (b) sensitivity to model weight randomization, (c) repeatability, and (d) reproducibility. Their performances versus baseline methods and localization network architectures were compared, using area under the precision-recall curve (AUPRC) and structural similarity index measure (SSIM) as metrics. RESULTS: All eight saliency map techniques failed at least one of the criteria and were inferior in performance compared with localization networks. For pneumothorax segmentation, the AUPRC ranged from 0.024 to 0.224, while a U-Net achieved a significantly superior AUPRC of 0.404 (P < .005). For pneumonia detection, the AUPRC ranged from 0.160 to 0.519, while a RetinaNet achieved a significantly superior AUPRC of 0.596 (P <.005). Five and two saliency methods (of eight) failed the model randomization test on the segmentation and detection datasets, respectively, suggesting that these methods are not sensitive to changes in model parameters. The repeatability and reproducibility of the majority of the saliency methods were worse than localization networks for both the segmentation and detection datasets. CONCLUSION: The use of saliency maps in the high-risk domain of medical imaging warrants additional scrutiny and recommend that detection or segmentation models be used if localization is the desired output of the network.Keywords: Technology Assessment, Technical Aspects, Feature Detection, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2021.

2.
J Am Coll Radiol ; 17(12): 1653-1662, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32592660

ABSTRACT

OBJECTIVE: We developed deep learning algorithms to automatically assess BI-RADS breast density. METHODS: Using a large multi-institution patient cohort of 108,230 digital screening mammograms from the Digital Mammographic Imaging Screening Trial, we investigated the effect of data, model, and training parameters on overall model performance and provided crowdsourcing evaluation from the attendees of the ACR 2019 Annual Meeting. RESULTS: Our best-performing algorithm achieved good agreement with radiologists who were qualified interpreters of mammograms, with a four-class κ of 0.667. When training was performed with randomly sampled images from the data set versus sampling equal number of images from each density category, the model predictions were biased away from the low-prevalence categories such as extremely dense breasts. The net result was an increase in sensitivity and a decrease in specificity for predicting dense breasts for equal class compared with random sampling. We also found that the performance of the model degrades when we evaluate on digital mammography data formats that differ from the one that we trained on, emphasizing the importance of multi-institutional training sets. Lastly, we showed that crowdsourced annotations, including those from attendees who routinely read mammograms, had higher agreement with our algorithm than with the original interpreting radiologists. CONCLUSION: We demonstrated the possible parameters that can influence the performance of the model and how crowdsourcing can be used for evaluation. This study was performed in tandem with the development of the ACR AI-LAB, a platform for democratizing artificial intelligence.


Subject(s)
Breast Neoplasms , Crowdsourcing , Deep Learning , Artificial Intelligence , Breast Density , Breast Neoplasms/diagnostic imaging , Female , Humans , Mammography
3.
Sci Rep ; 9(1): 10063, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296889

ABSTRACT

Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions. The ML component is an imaging data-driven graph-based semi-supervised learning model and we use the Proliferation-Invasion (PI) mechanistic tumor growth model. We thus refer to the hybrid model as the ML-PI model. The hybrid model was trained using 82 image-localized biopsies from 18 primary GBM patients with pre-operative MRI using a leave-one-patient-out cross validation framework. A Relief algorithm was developed to quantify relative contributions from the data sources. The ML-PI model statistically significantly outperformed (p < 0.001) both individual models, ML and PI, achieving a mean absolute predicted error (MAPE) of 0.106 ± 0.125 versus 0.199 ± 0.186 (ML) and 0.227 ± 0.215 (PI), respectively. Associated Pearson correlation coefficients for ML-PI, ML, and PI were 0.838, 0.518, and 0.437, respectively. The Relief algorithm showed the PI model had the greatest contribution to the result, emphasizing the importance of the hybrid model in achieving the high accuracy.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods , Algorithms , Cell Count , Humans , Image Interpretation, Computer-Assisted , Machine Learning , Models, Statistical , Models, Theoretical , Prognosis
4.
Cephalalgia ; 37(9): 828-844, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27306407

ABSTRACT

Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.


Subject(s)
Algorithms , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Migraine Disorders/diagnostic imaging , Adult , Female , Humans , Machine Learning , Male , Migraine Disorders/classification , Migraine Disorders/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology
5.
Neuro Oncol ; 19(1): 128-137, 2017 01.
Article in English | MEDLINE | ID: mdl-27502248

ABSTRACT

BACKGROUND: Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. METHODS: We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). RESULTS: We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). CONCLUSION: MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology.


Subject(s)
Biomarkers, Tumor/genetics , DNA Copy Number Variations/genetics , Genomics/methods , Glioblastoma/genetics , Glioblastoma/pathology , Magnetic Resonance Imaging/methods , Feasibility Studies , Glioblastoma/radiotherapy , Humans , Image Interpretation, Computer-Assisted , Neoplasm Staging , Prognosis
6.
PLoS One ; 10(11): e0141506, 2015.
Article in English | MEDLINE | ID: mdl-26599106

ABSTRACT

BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. METHODS: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. RESULTS: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). CONCLUSION: Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.


Subject(s)
Glioblastoma/diagnostic imaging , Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Algorithms , Contrast Media/administration & dosage , Diffusion Tensor Imaging/methods , Glioblastoma/pathology , Humans , Image Interpretation, Computer-Assisted , Machine Learning , Radiography
7.
Headache ; 55(6): 762-77, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26084235

ABSTRACT

BACKGROUND: The International Classification of Headache Disorders provides criteria for the diagnosis and subclassification of migraine. Since there is no objective gold standard by which to test these diagnostic criteria, the criteria are based on the consensus opinion of content experts. Accurate migraine classifiers consisting of brain structural measures could serve as an objective gold standard by which to test and revise diagnostic criteria. The objectives of this study were to utilize magnetic resonance imaging measures of brain structure for constructing classifiers: (1) that accurately identify individuals as having chronic vs episodic migraine vs being a healthy control; and (2) that test the currently used threshold of 15 headache days/month for differentiating chronic migraine from episodic migraine. METHODS: Study participants underwent magnetic resonance imaging for determination of regional cortical thickness, cortical surface area, and volume. Principal components analysis combined structural measurements into principal components accounting for 85% of variability in brain structure. Models consisting of these principal components were developed to achieve the classification objectives. Tenfold cross validation assessed classification accuracy within each of the 10 runs, with data from 90% of participants randomly selected for classifier development and data from the remaining 10% of participants used to test classification performance. Headache frequency thresholds ranging from 5-15 headache days/month were evaluated to determine the threshold allowing for the most accurate subclassification of individuals into lower and higher frequency subgroups. RESULTS: Participants were 66 migraineurs and 54 healthy controls, 75.8% female, with an average age of 36 +/- 11 years. Average classifier accuracies were: (1) 68% for migraine (episodic + chronic) vs. healthy controls; (2) 67.2% for episodic migraine vs healthy controls; (3) 86.3% for chronic migraine vs. healthy controls; and (4) 84.2% for chronic migraine vs episodic migraine. The classifiers contained principal components consisting of several structural measures, commonly including the temporal pole, anterior cingulate cortex, superior temporal lobe, entorhinal cortex, medial orbital frontal gyrus, and pars triangularis. A threshold of 15 headache days/month allowed for the most accurate subclassification of migraineurs into lower frequency and higher frequency subgroups. CONCLUSIONS: Classifiers consisting of cortical surface area, cortical thickness, and regional volumes were highly accurate for determining if individuals have chronic migraine. Furthermore, results provide objective support for the current use of 15 headache days/month as a threshold for dividing migraineurs into lower frequency (i.e., episodic migraine) and higher frequency (i.e., chronic migraine) subgroups.


Subject(s)
Brain/pathology , Magnetic Resonance Imaging/standards , Migraine Disorders/classification , Migraine Disorders/diagnosis , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Principal Component Analysis , Self Report/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...