Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 236: 113492, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35395602

ABSTRACT

In many studies, grasses were used to increase the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil because they are the most common plant species on the ground level and are quite resistant to contamination with these compounds. One of the main failures in PAH remediation in soil using plant species was the negative impact on germination and seedling growth. The objective of this study was to evaluate grass seed germination and seedling growth affected by drill cuttings to determine the resistance of selected grass species to the impact of PAH and their suitability for an effective phytoremediation of soils contaminated with waste that contain compounds from this group. In the study four grass species: tall fescue (Festuca arundinacea), red fescue (Festuca rubra), perennial ryegrass (Lolium perenne) and common meadow-grass (Poa pratensis). The germination energy of all species decreased as the amount of drill cuttings increased. Among the species studied, the highest germination energy and capacity were found in Lolium perenne (54.1 and 73.2 respectively), and the lowest - in Poa pratensis (16.7 and 23.3 respectively). With an increasing amount of drill cuttings, the root and seedling height were decreased. Festuca arundinacea seedlings were distinctly the highest and had the longest roots (96.7 and 52.7, respectively), while Poa pratensis seedlings showed the significantly slowest seedling and root elongation rate (30.4 and 12.4, respectively). However, the strongest decrease in seedling height and root length compared to the control was observed in Festuca rubra. Based on IC50, the greatest tolerance to the addition of drilling waste to the substrate was found for Festuca arundinacea and Festuca rubra. The conducted investigation indicates that Festuca arundinacea and Lolium perenne are grass species that are least sensitive to drilling waste in the substrate because no significant differences were found in root length and seedling height between the control soil and the soil where a PAH dose of 5% and 10% was applied.


Subject(s)
Festuca , Lolium , Poa , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Festuca/metabolism , Germination , Plants/metabolism , Poa/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Seedlings/metabolism , Soil/chemistry , Soil Pollutants/analysis
2.
Ecol Evol ; 10(18): 9841-9852, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005348

ABSTRACT

It was assumed in the study that heavy metals occurring in soils and the air accumulate in grasses constituting the main species used in the turfing of soil in road verges and embankments along traffic routes and in other parts of urbanized areas. The aim of the present study was to assess the bioaccumulation of Cu, Pb, and Zn in three selected lawn cultivars of five grass species and in the soil of the roadside green belt in terms of soil properties and heavy metal uptake by plants in the aspect of determining their usefulness in protecting the soils from contamination caused by motor vehicle traffic. Samples of the plant material and soil were collected for chemical analysis in the autumn of 2018 (October) on the embankment along National Road No. 17 between Piaski and Lopiennik (Poland), where 15 lawn cultivars of five grass species had been sown 2 years earlier. During the study, Cu, Pb, and Zn levels were determined in the aboveground biomass of the grasses under study and in the soil beneath these grasses (the 0-20 cm layer). All the grass species under study can thus be regarded as accumulators of Cu and Zn because the levels of these elements in the aboveground biomass of the grasses were higher than in the soil beneath these grasses. The present study demonstrates that the grasses can accumulate a large amount of Cu and Zn from soils and transfer it to the aboveground biomass. Tested species of grasses are not a higher bioaccumulators for Pb. The best grass species for the sowing of roadsides embankment, with the highest BCF values for the studied metals, is Lolium perenne (Taya variety).

SELECTION OF CITATIONS
SEARCH DETAIL
...