Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Elife ; 102021 06 02.
Article in English | MEDLINE | ID: mdl-34075878

ABSTRACT

High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified heterogeneous nuclear ribonucleoprotein M (HNRNPM) as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and backsplicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM-dependent linear-splicing events using splice-switching-antisense-oligonucleotides was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors.


Subject(s)
Adenocarcinoma/metabolism , Cell Proliferation , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , Prostatic Neoplasms/metabolism , RNA Splicing , RNA, Circular/biosynthesis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , Humans , Male , Mice, SCID , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Circular/genetics , Tumor Burden , Tumor Cells, Cultured
2.
Sci Adv ; 6(35): eaaz4551, 2020 08.
Article in English | MEDLINE | ID: mdl-32923617

ABSTRACT

Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Cell Proliferation , Liver Neoplasms/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , RNA , RNA, Transfer/genetics , RNA, Transfer/metabolism , tRNA Methyltransferases
3.
Nat Commun ; 10(1): 5759, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848333

ABSTRACT

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Molecular Probes/pharmacology , Crystallography, X-Ray , DNA Methylation/drug effects , Enzyme Inhibitors/chemistry , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/ultrastructure , Histones/metabolism , Humans , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Molecular Probes/chemistry , Protein Domains , S-Adenosylmethionine/metabolism
4.
Cancer Cell ; 36(2): 194-209.e9, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31408619

ABSTRACT

Cancer-associated mutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing of SF-mutant leukemias over wild-type counterparts. These data identify genetic subsets of cancer most likely to respond to PRMT inhibition, synergistic effects of combined PRMT5 and type I PRMT inhibition, and a mechanistic basis for the therapeutic efficacy of PRMT inhibition in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ethylenediamines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrroles/pharmacology , RNA Splicing/drug effects , RNA, Neoplasm/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Catalysis , Enzyme Inhibitors/pharmacokinetics , Ethylenediamines/pharmacokinetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Pyrroles/pharmacokinetics , RNA, Neoplasm/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , THP-1 Cells , Tumor Cells, Cultured , U937 Cells , Xenograft Model Antitumor Assays
5.
Nature ; 523(7558): 96-100, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25970242

ABSTRACT

Deregulated expression of the MYC transcription factor occurs in most human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Overexpressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown. Here we show that during lymphomagenesis in Eµ-myc transgenic mice, MYC directly upregulates the transcription of the core small nuclear ribonucleoprotein particle assembly genes, including Prmt5, an arginine methyltransferase that methylates Sm proteins. This coordinated regulatory effect is critical for the core biogenesis of small nuclear ribonucleoprotein particles, effective pre-messenger-RNA splicing, cell survival and proliferation. Our results demonstrate that MYC maintains the splicing fidelity of exons with a weak 5' donor site. Additionally, we identify pre-messenger-RNAs that are particularly sensitive to the perturbation of the MYC-PRMT5 axis, resulting in either intron retention (for example, Dvl1) or exon skipping (for example, Atr, Ep400). Using antisense oligonucleotides, we demonstrate the contribution of these splicing defects to the anti-proliferative/apoptotic phenotype observed in PRMT5-depleted Eµ-myc B cells. We conclude that, in addition to its well-documented oncogenic functions in transcription and translation, MYC also safeguards proper pre-messenger-RNA splicing as an essential step in lymphomagenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma/physiopathology , Proto-Oncogene Proteins c-myc/metabolism , RNA Precursors/metabolism , RNA Splicing/physiology , Animals , Exons/genetics , HEK293 Cells , Humans , Introns/genetics , Mice , Oligonucleotides, Antisense/metabolism , Protein Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins c-myc/genetics
6.
Stem Cell Res Ther ; 5(3): 71, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24886724

ABSTRACT

INTRODUCTION: Insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs) and angiopoietin-like proteins (ANGPTLs) can enhance the ex vivo expansion of hematopoietic stem cells (HSCs) when used with a standard cytokine cocktail of stem cell factor (SCF), thrombopoietin (TPO) and FLT3 ligand (FL). In order to determine the optimal dose and combination of IGFs, IGFBPs and ANGPTLs, serial dilution and full permutation of IGFBP1, IGFBP2, IGF2 and ANGPTL3 were applied on a cryopreserved umbilical cord blood mononuclear cell (UCB-MNC) ex vivo expansion system. METHODS: In this system, 4 × 105 cells/ml of UCB-MNCs were inoculated in serum-free Stemspan® medium (Stemcell technologies, vancouver, BC, Canada) supplied with standard basal cytokine combination of 100 ng/ml SCF, 50 ng/ml FL and 100 ng/ml TPO and supported by a bone marrow mesenchymal stromal cell layer. RESULTS: Paradoxically, experiment results showed that the highest expansion of CD34+CD38-CD90+ primitive progenitor was stimulated by cytokine combination of SCF + TPO + FL + IGFBP1 + IGFBP2 + ANGPTL3 at a low dose of 15 ng/ml IGFBP1 and 20 ng/ml IGFBP2 and ANGPTL3. This ex vivo expansion was further validated in 8-week-old to 10-week-old nonobese diabetic/severe combined immunodeficiency interleukin 2 gamma chain null (NOD/SCID-IL2Rγ-/-) mice. Limiting dilution assay showed excellent correlation between the HSC ex vivo surface marker of CD34+CD38-CD90+ and the in vivo competitive repopulating unit (CRU) functional assay. CONCLUSION: IGFBP1, IGFBP2, IGF2 and ANGPTL3 can stimulate the expansion of CD34+CD38-CD90+ primitive progenitor at low dose. The optimal combination comprises IGFBP1, IGFBP2 and ANGPTL3 together with the standard cytokine cocktail of SCF, FL and TPO. The CD34+CD38-CD90+ phenotype can serve as a surrogate ex vivo surface marker for HSCs due to consistency with the in vivo CRU functional assay.


Subject(s)
Angiopoietins/pharmacology , Cell Culture Techniques/methods , Hematopoietic Stem Cells/cytology , Insulin-Like Growth Factor Binding Protein 1/pharmacology , Insulin-Like Growth Factor Binding Protein 2/pharmacology , Insulin-Like Growth Factor II/pharmacology , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins , Animals , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Humans , Mice , Mice, Inbred NOD , Mice, SCID
7.
Nanomedicine ; 9(8): 1304-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23732300

ABSTRACT

In this study, carboxylic acid functionalized single walled carbon nanotubes (f-SWCNT-COOH) was shown to support the viability and ex vivo expansion of freeze-thawed, non-enriched hematopoietic stem and progenitor cells (HSPC) in human umbilical cord blood-mononucleated cells (UCB-MNC). Our in vitro experiments showed that f-SWCNT-COOH increased the viability of the CD45(+) cells even without cytokine stimulation. It also reduced mitochondrial superoxides and caspase activity in CD45(+) cells. f-SWCNT-COOH drastically reduced the proportions of CD45(-) cells in the non-enriched UCB-MNC. Phenotypic expression analysis and functional colony forming units (CFU) showed significant ex vivo expansion of HSPC, particularly of CD45(+)CD34(+)CD38(-) population and granulocyte-macrophage (GM) colonies, in f-SWCNT-COOH augmented cultures supplemented with basal cytokines. In vivo data suggested that f-SWCNT-COOH expanded UCB-MNC could repopulate immunodeficient mice models with minimal acute or sub-acute symptoms of graft-versus-host disease (GVHD) and f-SWCNT-COOH dependent toxicity. FROM THE CLINICAL EDITOR: In this paper a novel method is presented by using single wall functionalized carbon nanotubes to enhance viability and ex vivo expansion of freeze-thawed, non-enriched hematopoietic stem and progenitor cells in human umbilical cord blood -mononucleated cells. Detailed data is presented about enhanced viability, including improved repopulation of immunodeficient mice models with minimal acute or sub-acute symptoms of graft-versus-host disease.


Subject(s)
Fetal Blood/cytology , Fetal Blood/transplantation , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Nanotubes, Carbon/chemistry , ADP-ribosyl Cyclase 1/analysis , Animals , Antigens, CD34/analysis , Carboxylic Acids/chemistry , Cell Culture Techniques/methods , Cell Survival , Freezing , Graft vs Host Disease/prevention & control , Humans , Leukocyte Common Antigens/analysis , Mice , Mice, SCID
8.
Cytotherapy ; 15(5): 610-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23419678

ABSTRACT

BACKGROUND AIMS: Double cord blood transplantation (DCBT) may shorten neutrophil and platelet recovery times compared with standard umbilical cord blood transplantation. However, DCBT may be associated with a higher incidence of graft versus host disease (GVHD). In this study, we explored the effect of ex vivo expansion of a single cord blood unit (CBU) in a DCBT setting on GVHD and engraftment. METHODS: Post-thaw cryopreserved CBUs from cord blood banks, hereinafter termed "banked" CBUs, were co-cultured with confluent bone marrow mesenchymal stromal cells (MSCs) supplemented with a cytokine cocktail comprising 100 ng/mL stem cell factor, 50 ng/mL flt3-ligand, 100 ng/mL thrombopoietin and 20 ng/mL insulin-like growth factor binding protein 2 for 12 days. RESULTS: When DCBT of one unexpanded and one expanded CBU was performed in non-obese diabetic/severe combined immunodeficient-IL2Rgamma(null) (NOD/SCID-IL2γ(-/-), NSG) mice, the expanded CBU significantly boosted in vivo hematopoiesis of the unexpanded CBU. The median survival of NSG mice was significantly improved from 63.4% (range, 60.0-66.7%) for mice receiving only unexpanded units to 86.5% (range, 80.0-92.9%) for mice receiving an expanded unit (P < 0.001). The difference in survival appeared to be due to a lower incidence of GVHD in the mice receiving expanded cells. This effect on GVHD was mediated by a significant increase in regulatory T cells seen in the presence of MSC co-culture. CONCLUSIONS: MSC-supported ex vivo expansion of "banked" CBU boosted unexpanded CBU hematopoiesis in vivo, increased regulatory T cell content and decreased the incidence of GVHD.


Subject(s)
Bone Marrow Cells/cytology , Fetal Blood/transplantation , Graft vs Host Disease/immunology , Mesenchymal Stem Cells/cytology , T-Lymphocytes, Regulatory/cytology , Animals , Cells, Cultured , Coculture Techniques , Fetal Blood/cytology , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Hematopoiesis , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Mice , Transplantation, Heterologous
9.
Cytotherapy ; 14(9): 1064-79, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22775077

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. METHODS: In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). RESULTS: Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P < 0.01). This was associated with significant enhancement of mitochondrial membrane potential (P < 0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P < 0.0001). CONCLUSIONS: Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture.


Subject(s)
Cell Culture Techniques , Cytosol/metabolism , Fetal Blood/cytology , Leukocytes, Mononuclear/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Death/genetics , Cell Fusion , Cell Proliferation , Cell Survival , Cell Transdifferentiation , Coculture Techniques , Green Fluorescent Proteins/analysis , Humans , Membrane Potential, Mitochondrial , Mice , NIH 3T3 Cells
10.
Biol Blood Marrow Transplant ; 18(5): 674-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22240732

ABSTRACT

Ex vivo expansion of cord blood (CB) hematopoietic stem cells and cotransplantation of 2 CB units (CBUs) could enhance the applicability of CB transplantation in adult patients. We report an immunodeficient mouse model for cotransplantation of ex vivo expanded and unexpanded human CB, showing enhanced CB engraftment and provide proof of concept for this transplantation strategy as a means of overcoming the limiting cell numbers in each CBU. CBUs were expanded in serum-free medium supplemented with stem cell factor, Flt-3 ligand, thrombopoietin, and insulin growth factor binding protein-2 together with mesenchymal stromal cell coculture. Unexpanded and expanded CB cells were cotransplanted by tail vein injection into 45 sublethally irradiated nonobese diabetic SCID-IL2γ(-/-) (NSG) mice. Submandibular bleeding was performed monthly, and mice were sacrificed 4 months after transplantation to analyze for human hematopoietic engraftment. Expansion of non-CD34(+) selected CB cells yielded 40-fold expansion of CD34(+) cells and 3.1-fold expansion of hematopoietic stem cells based on limiting dilution analysis of NSG engraftment. Mice receiving expanded grafts exhibited 4.30% human cell repopulation, compared with 0.92% in mice receiving only unexpanded grafts at equivalent starting cell doses, even though the unexpanded graft predominated in long-term hematopoiesis (P = .07). Ex vivo expanded grafts with lower initiating cell doses also showed equivalent engraftment to unexpanded grafts with higher cell dose (8.0% versus 7.9%; P = .93). In conclusion, ex vivo expansion resulted in enhanced CB engraftment despite eventual rejection by the unexpanded CBU.


Subject(s)
Fetal Blood/transplantation , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Insulin-Like Growth Factor Binding Protein 2/pharmacology , Mesenchymal Stem Cells/drug effects , Animals , Antigens, CD34/biosynthesis , Antigens, CD34/immunology , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Fetal Blood/cytology , Fetal Blood/immunology , Graft Survival/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Injections, Intravenous , Membrane Proteins/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mice , Mice, SCID , Stem Cell Factor/pharmacology , Thrombopoietin/pharmacology , Transplantation, Heterologous , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...