Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genet ; 19(1): 22, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29439679

ABSTRACT

BACKGROUND: Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. METHODS: In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. RESULTS: We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. CONCLUSIONS: Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/epidemiology , Adolescent , Adult , Cohort Studies , Exome , Female , Gene Library , Genomics , Glycated Hemoglobin/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , India/epidemiology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Sequence Analysis, DNA , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Young Adult
2.
Ann Hum Genet ; 79(5): 373-379, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26155736

ABSTRACT

The transcription factor 7-like 2 (TCF7L2) gene plays a significant role in the development of type 2 diabetes and diabetic nephropathy. The aim of this study was to investigate the association of TCF7L2 rs12255372 (G/T)polymorphism with type 2 diabetic nephropathy in the South Indian population. A total of 2102 subjects, 927 normal glucose tolerant (NGT) subjects, 598 type 2 diabetic subjects without nephropathy (DM), and 577 type 2 diabetic subjects with nephropathy (DN) were genotyped by MassARRAY. As compared to the NGT group, the odds ratio (adjusted for age, sex, BMI, HbA1c, and systolic BP) computed for the GT/TT genotype taking the GG genotype as reference was found to be 2.02 (95% CI: 1.16-3.51, p = 0.013) for DN and 1.94 (95% CI: 1.36-2.78, p = 0.0002) for DM. The genotype frequency was not significantly different between the DM and DN groups. In conclusion, the rs12255372 polymorphism in the TCF7L2 gene is associated with type 2 diabetes and DN but its association with DN is mediated through diabetes.

3.
Ann Hum Genet ; 79(1): 10-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25441779

ABSTRACT

Heterozygous mutations of the HNF1B gene (HNF1B-MODY or MODY5) are associated with a wide clinical spectrum of renal and extrarenal disease without clear genotype-phenotype correlation. In this study, we investigated the prevalence of HNF1B gene mutations in young Indian diabetic patients with various renal abnormalities. Fifty unrelated young diabetic patients, who also had renal abnormalities, were selected from the electronic records of a large diabetes centre in Chennai, in southern India. All patients were sequenced for HNF1B gene mutations. The whole or partial gene deletion was analyzed by MLPA. Functional characterization of the novel variant (Asn321Asp) was also performed using transcriptional activation and subcellular localization assays. We identified six different HNF1B gene mutations which included four previously reported (-67C>T, Arg165His, IVS2nt+2insT, Met1_Trp557del) and two novel variations (Asn321Asp, IVS3nt-4C>G). The functional study revealed that the novel variation Asn321Asp in both the heterozygous and homozygous state showed similar transcriptional activity, expression levels and normal transportation of protein to the nucleus similar to wild type, suggesting that it is not likely to be pathogenic. This is the first major study of HNF1B-MODY from India and shows that about 10% of young diabetic subjects with renal abnormalities seen at a tertiary diabetes centre harbor HNF1B gene mutations.


Subject(s)
Diabetes Mellitus/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Adolescent , Adult , Aged , Amino Acid Sequence , Asian People/genetics , Child , Cohort Studies , DNA Mutational Analysis , Female , Gene Deletion , HEK293 Cells , HeLa Cells , Humans , India , Male , Middle Aged , Molecular Sequence Data , Pedigree , Promoter Regions, Genetic , RNA Splice Sites/genetics , Transcriptional Activation , Young Adult
4.
Pediatr Diabetes ; 15(4): 313-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24168455

ABSTRACT

OBJECTIVE: This study describes the clinical and genetic evaluation of permanent neonatal diabetes due to Wolcott-Rallison syndrome (WRS) in south Indian consanguineous families. We aimed to evaluate the genetic basis of the disease in eight children with WRS from five South Indian families. PATIENTS AND METHODS: We studied eight children who presented with permanent neonatal diabetes from five South Indian families. Follow up clinical evaluation revealed features (like liver disease, skeletal dysplasia, and thyroid dysfunction) suggestive of WRS. All the coding exons along with splice sites of KCNJ11, ABCC8, INS, GCK and EIF2AK3 genes were sequenced in all the probands. RESULTS: Two novel homozygous mutations (Trp658Ser, c.3150+1G>T) and one known homozygous mutation (Arg1065*, c.3193C>T) in EIF2AK3 gene were identified in children with WRS. Mutation Arg1065*was identified in four children. CONCLUSIONS: Our results in these families show that the mutations in homozygous state are likely to be causative. We suggest the screening for EIF2AK3 gene mutations as WRS is now recognized as the most frequent cause of neonatal diabetes in children with consanguineous parents. As the mode of inheritance is recessive, screening for genetic mutations becomes important to aid in risk prediction and clinical management.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Epiphyses/abnormalities , Mutation , Osteochondrodysplasias/genetics , eIF-2 Kinase/genetics , Amino Acid Substitution , Congenital Hypothyroidism/etiology , Congenital Hypothyroidism/physiopathology , Consanguinity , Diabetes Mellitus, Type 1/mortality , Diabetes Mellitus, Type 1/physiopathology , Epiphyses/physiopathology , Female , Follow-Up Studies , Genetic Association Studies , Hepatic Insufficiency/etiology , Hepatic Insufficiency/physiopathology , Homozygote , Humans , India , Infant , Infant, Newborn , Male , Osteochondrodysplasias/mortality , Osteochondrodysplasias/physiopathology , Pedigree , Point Mutation , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/physiopathology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...